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Theory of spiral wave dynamics in weakly excitable media: Asymptotic reduction
to a kinematic model and applications
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In a weakly excitable medium, characterized by a large threshold stimulus, the free end of an isolated broken
plane wave~wave tip! can either rotate~steadily or unsteadily! around a large excitable core, thereby producing
a spiral pattern, or retract, causing the wave to vanish at boundaries. An asymptotic analysis of spiral motion
and retraction is carried out in this weakly excitable large core regime starting from the free-boundary limit of
the reaction-diffusion models, valid when the excited region is delimited by a thin interface. The wave
description is shown to naturally split between the tip region and a far region that are smoothly matched on an
intermediate scale. This separation allows us to rigorously derive an equation of motion for the wave tip, with
the large scale motion of the spiral wave front slaved to the tip. This kinematic description provides both a
physical picture and exact predictions for a wide range of wave behavior, including~i! steady rotation~fre-
quency and core radius!, ~ii ! exact treatment of the meandering instability in the free-boundary limit with the
prediction that the frequency of unstable motion is half the primary steady frequency,~iii ! drift under external
actions~external field with application to axisymmetric scroll ring motion in three dimensions, and spatial-
or/and time-dependent variation of excitability!, and ~iv! the dynamics of multiarmed spiral waves with the
prediction that steadily rotating waves with two or more arms are linearly unstable. Numerical simulations of
FitzHugh-Nagumo kinetics are used to test several aspects of our results. In addition, we discuss the semi-
quantitative extension of this theory to finite cores and pinpoint mathematical subtleties related to the thin
interface limit of singly diffusive reaction-diffusion models.@S1063-651X~99!01610-4#

PACS number~s!: 82.40.Bj, 47.20.Hw, 87.18.2h
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I. INTRODUCTION

Spiral waves are characteristic structures of excitable
dia @1,2# that have been observed in systems as differen
catalytic surface oxidation@3#, the Belousov-Zhabotinsky
chemical reaction@4–7#, aggregating colonies of slime mol
@8#, and heart tissue where they are suspected to play
essential role in cardiac arrhythmia and fibrillation@9#. Spiral
waves are prone to a variety of instabilities, the best stud
of which is meander, and they can be made to drift and
controlled in diverse ways, for instance, by varying the m
dium excitability in space or/and time, or by adding an e
ternal field.

Much of the observed experimental phenomenology
been reproduced by using simplified two-variable activat
controller types of description, like the classic FitzHug
Nagumo~FN! model @10# and mild variations of it. Exten-
sive surveys@11,12# of the possible types of wave motion i
such models have been performed in a reduced param
space where the only two parameters left to vary are
medium excitabilityD, defined in Sec. II in such a way tha
the isolated pulse speed is proportional toD for weak excit-
ability, and the ratioe between the time scale of the activat
and controller kinetics, which controls the abruptness of
wave front~i.e., the thickness of the interface delimiting th
excited region!. Different regimes have been identified th
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are summarized in Fig. 1 for simple FN kinetics@13#. In the
whole region above thepropagationboundary (]P), the me-
dium excitability is too weak for any plane wave to prop
gate persistently. In the narrower region comprised betw

FIG. 1. Plots of the propagation (]P), rotor (]R), and meander
(]M ) boundaries in the parameter spacee ~the ratio of the fast
activator to the slower controller time scale! and D ~the medium
‘‘excitability’’ defined as vs2v0) for the numerically simulated
FitzHugh-Nagumo kinetics@ f (u,v)53u2u32v,g(u,v)5u2d#.
Our analysis predicts that the three boundaries smoothly appr
the origin without crossing ase→0, with Dp;2e1/2ln e for ]P,
Dc;e1/3 for ]R, andDm2Dc;2e5/9/(ln e)2/3 for ]M . The predic-
tion Dc5(21/24e/Bc)

1/3 with Bc50.535 for the]R boundary is in
good agreement with the simulations.
5073 © 1999 The American Physical Society
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]P and therotor boundary (]R), the medium excitability is
sufficient for a plane wave to propagate but not for a sp
wave to form. In this region, the end of a broken wave fro
referred to hereafter as the ‘‘wave tip,’’ simply retrac
steadily @Fig. 2~a!#, such that this finger-shaped wave mu
shrink in length and eventually vanish at boundaries in
finite system. In the even narrower region comprised
tween]R and themeanderboundary (]M ), the excitability
is sufficient for large core spirals to form and the wave
now rotates steadily at a frequencyv1 around a circular core
of radiusR0. Right on the]R boundary, a half plane wave
referred to hereafter as the ‘‘critical finger,’’ propagat
without changing its shape. It can be equivalently interpre
as a retracting finger with vanishing retracting velocity or
a spiral wave of infinite core radius. As one keeps increas
the excitability, the radius of the spiral core decreases
below the]M boundary the spiral tip traces a classic ‘‘flow
erlike’’ meander pattern@Fig. 2~b!#. It has been shown tha
meander originates from a supercritical Hopf bifurcation
]M which adds a second frequencyv2 to the basic spiral
rotation @14,15#. The meander patterns exhibit first inwa
petals asv2,v1. Outward petals appear asv2 becomes
greater thanv1. Further away from]M , the spiral tip motion
becomes more complex and possibly chaotic past the
poorly characterized]C boundary@12# ~not shown in Fig. 1!.
Given that a Hopf bifurcation takes place on]M , symmetry
arguments fix its resonant coupling to the translation mo
whenv25v1 and thus determine the bifurcation structure
the tip motion near the codimension 2 pointv25v1 on ]M
@16,17#.

In contrast to this rather detailed knowledge, the prec
mechanisms that govern spiral formation and motion rem
less well understood from both physical and predictive vie
points. A simple picture to answer even basic questions, s
as why the meander occurs and why this instability is os
latory ~i.e., a Hopf bifurcation! beyond numerical observa
tion is missing. From a predictive viewpoint, we still lack
quantitative analytical understanding of what controls
]M boundary or the frequency ratiov2 /v1 in the parameter
space of reaction-diffusion models. Similar uncertainties
to a large extent also present for other phenomena like s
drift under external action.

A kinematical model of spiral dynamics, aimed at t
weakly excitable large core limit, has been proposed so
years ago on a purely phenomenological basis@18#. It has

FIG. 2. Surface plots ofu and wave tip trajectories~thick solid
line! illustrating in ~a! a retracting wave ford521.4 ande50.27,
in between the]P and ]R boundaries, and in~b! a large core
meandering spiral wave ford521.4 ande50.18, close to the]M
boundary.
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been helpful to rationalize experimental facts but it has
been derived from the underlying reaction-diffusion equ
tions. Thus it remains limited in its predictions, e.g., it fa
short of predicting the]M boundary and the ratiov2 /v1.
Moreover, at a more conceptual level, the general validity
the boundary condition assumed for the free end of the w
front in this kinematic theory remains somewhat unclear.

The first goal of this paper is to present a rigoro
asymptotic derivation of a kinematic theory of spiral wa
motion in the weakly excitable and free-boundary lim
~lower left hand corner of Fig. 1! on which we focus. As we
shall see, the structure of this theory differs from the o
proposed phenomenologically in Ref.@18#. The second goa
of this paper is to demonstrate, through selected applicat
of this theory, that it is able to provide a physical and qua
titative understanding of a wide range of wave phenom
such as meander, drift under various external actions con
ered in previous studies@19–25#, and multiarm spiral wave
motion. Highlights of our results include an asymptotica
exact treatment of the meander instability fore!1, which
gives the precise location of the]M boundary and shows
that the instability arises from a supercritical Hopf bifurc
tion with v2 /v151/2 in this limit, the finding that multiarm
spiral waves with two or more arms are always linearly u
stable, in contrast to a previous numerical study@26#, and
predictions of the spiral drift speed and drift angle in
external field. These results are generally found to be in g
quantitative agreement with our simulations of FN kinetic

The starting point of our analysis is the standard fre
boundary limit of reaction-diffusion models@27# described in
Sec. II, which is valid when the excited region is surround
by a thin interface of widthe!1. In this limit, the fast acti-
vator variable is eliminated in favor of an eikonal equati
that gives the normal velocity of this boundary. This veloc
generally depends on the local radius of curvature of t
interface, assumed large compared toe, as well as the local
value of the slow controller variable at the interface.

This free-boundary problem is nontrivial to solve becau
it requires us to treat both the dynamics of the wave fro
which is the part of the boundary where the excited reg
propagates into the recovery region of the medium, and
wave back where the reverse process occurs. Far from
tip, the front and back behave essentially identically, su
that a ‘‘single-front’’ description is rigorously possible. I
the tip region, however, the front and back must be matc
at the tip~i.e., point of zero normal velocity along the boun
ary!, which is a difficult task. For this reason a single-fro
description with a somewhat arbitrary tip condition was fi
used historically to relate the steady rotation frequency
core radius of spirals@28#. The kinematic theory of Ref.@18#
is an attempt to extend this picture to an unsteady situat
Subsequent solutions of the complete free-boundary p
lem, with a rigorous matching of front and back that provid
a unique and independent determination of the spiral
quency and wavelength, focused on two limits. One of th
limits ~see @29# and earlier references therein! is obtained
mathematically by assuminge!1 while keepingD fixed of
order unity, which corresponds physically to a highly exc
able medium. The wavelength and frequency obey in t
limit @30# certain scaling laws withe proposed by Fife@31#.
The wave front and wave back, however, are matched o
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singular core solutions~of size e with only activator diffu-
sion! that have later been shown to be generically unsta
@29#; this result actually seems to agree with the numer
observation of complex meander~and thus unstable motion!
in this limit @12#. Thus these solutions do not provide
proper starting point for a kinematic theory aimed to descr
the onset of meander. A better starting point, on which
focus here, is the second limit originating from Ref.@32#
where one constructs smooth core solutions to the f
boundary problem. It was shown in@33# that this can in fact
only be consistently done for a weakly excitable mediu
when the radius of curvature of the boundary at the tip
mains much larger than the front and back interface wid
i.e., by assuming simultaneouslye!1 andD;e1/3!1. This
allowed a rigorous derivation of the line]R in the weak
excitability limit @33# in good quantitative agreement wit
numerical simulations of FitzHugh-Nagumo kinetics~lower
left-hand corner of Fig. 1!, as well as a semianalytic deriva
tion of the selected core radius/frequency of spiral waves
retracting wave speed in the same limit@34#.

The present kinematic theory is derived by first refini
analytically the description of steady retraction and rotat
in this weakly excitable limit~Sec. IV!, and then extending i
to an unsteady regime~Sec. V! for the nontrivial case of
self-interacting spirals, i.e., where the wave tip motion
influenced by the average controller concentration left by
previous passage of the wave front. This allows us to de
an equation of motion for the wave tip that is then used
analyze meander in a linear and nonlinear regime~Sec. VI!.
Results of these two sections have been summarized
previous short publication@35#. Further applications of the
kinematic theory are then contained in subsequent sect
that include spiral drift under various external actions wi
out self-interaction~Sec. VII! and interacting multiarm spira
waves~Sec. VIII!. Finally, corrections to the large core re
sults are discussed in Sec. IX and several points are fur
analyzed in four appendixes. In addition, for clarity of exp
sition, we have found best to first give a simple physi
picture of the kinematic theory and summarize the main
sults of its application in Sec. III. This section is purpose
aimed to discuss this theory in terms of experimentally m
surable quantities as well as to provide a guide to the res
the paper.

II. REACTION-DIFFUSION MODEL
AND FREE-BOUNDARY LIMIT

We consider the classic activator~u! controller (v) two-
variable reaction-diffusion model of excitable media@10#,

] tu5Du¹2u1 f ~u,v !/tu , ~1!

] tv5Dv¹2v1g~u,v !/tv , ~2!

with a linearly stable rest state (u0 ,v0). We focus in this
paper on the singly diffusive caseDv50, although we shall
also briefly consider the slow controller diffusion limitg
[Dv /Du!1 in Sec. VI. Theu nullcline @ f (u,v)50# is as-
sumed to have the standard S shape in the (u,v) plane. A
simple choice of FN kinetics that we use for the numeri
simulations isf (u,v)53u2u32v, g(u,v)5u2d with the
rest stateu05d,v053d2d3. It is convenient to rewrite Eqs
le
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~1! and ~2! in a standard dimensionless form by measur
time and length in units oftv and (Dutv

2/tu)1/2, respectively,
which yields for the singly diffusive case

] tu5e¹2u1 f ~u,v !/e, ~3!

] tv5g~u,v !, ~4!

wheree[tu /tv . We study this dimensionless form of th
equations in the rest of this paper, except in the next sec
where we summarize the essential ingredients of the k
matic theory in dimensional units. For smalle, the excited
region (u.A3 with the previous choice! of a propagating
wave is separated by a sharp boundary from the unexcite
recovering medium (u.2A3 with the previous choice!. The
wave description can thus be reduced to determining the
tion of this boundary ~i.e., a free-boundary problem!
@2,28,32#:

cn5c~v !2ek, ~5!

] tv5g„u6~v !,v… in D 6, ~6!

wherecn is the normal velocity of the interface separatin
the excited and recovery regions of the medium denoted
D 1 and D 2, respectively,k is the local curvature of this
interface, andu6(v) denotes the rightmost (1) and leftmost
(2) branch of theu nullcline @ f (u,v)50#. The function
c(v) is entirely determined by Eq.~3! with v fixed. We
measure the excitability of the medium, i.e., the thresh
stimulus necessary to cause a response, by the parameD
[vs2v0, wherevs is the stall value ofv at which c(vs)
50. The isolated pulse speedc0[c(v0) is then a monoto-
nously increasing function ofD with c05aD for D!1(a
51/A2 for our numerical choice!. For values ofv nearvs ,
Eq. ~6! can be simplified even further to

] tv5H 1/te in D 1

2~v2v0!/tR in D 2,

~7!

~8!

where the activator time scalete51/g„u1(vs),vs… controls
the pulse duration and the recovery time

tR5
]uf

~]ug]v f 2]vg]uf !
U

u5u2(vs),v5vs

~9!

is the time scale over which the controller variable returns
its rest state after an excitation@for our numerical choice,
te51/(2A3),tR56#.

III. PHYSICAL PICTURE OF KINEMATIC THEORY
AND MAIN RESULTS

A. Retraction and rotation

In a typical chemical or biological excitable medium
many parameters~chemical or ionic concentrations, temper
ture, light, etc.!, control the excitability of the medium. How
ever, independently of the complexity of the medium, it
generally possible to construct a single dimensionless par
eter @33,34#
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B5
2Rtip

W
5

2Du

c0W
, ~10!

which determines whether the tip rotates, and thus form
spiral wave, or whether it simply retracts. This paramete
expressed as the ratio of two length scales that charact
the tip region of a broken plane wave that is shown sc
matically in Fig. 3. The first is the radius of curvatureRtip of
the wave boundary at the tip. In the limit (e!1) where this
boundary is thin,Rtip is obtained by applying the eikona
equation at the tip, which yieldscn505c02Du /Rtip , and
thus Rtip5Du /c0 where c0 is the plane wave speed. Th
second length scaleW is the constant width of the excite
region away from the tip. As argued in@33,34#, the wave
boundary in the tip region can only be smooth ifRtip;W,
such that the]R boundary must correspond to a fixed val
of B5Bc of order unity; an explicit calculation~Refs.
@33,34# and Sec. IV A here! yields Bc50.535. ForB.Bc ,
the excitability of the medium is not sufficient to overcom
diffusion in the most highly curved part of the tip regio
which retracts. In contrast forB,Bc , the excitability is suf-
ficient to overcome retraction, and the increase ofcn away
from the tip induces rotation.

Increasing~decreasing! B corresponds to decreasing~in-
creasing! the excitability of the medium while moving nor

FIG. 3. Sketch of the spiral tip region and unsteady tip traject
~solid lines!. (r ,u) denotes the polar coordinates of the wave
with respect to the fixed steady-state center of rotationO. Ri is the
instantaneous radius of curvature of the unsteady tip trajec
about the instantaneous center of rotationOi , with Oi5O andRi

5R0 for steady rotation, andRtip is the radius of curvature of the
boundary between the excited and recovery regions of the med
at the tip.ct denotes the instantaneous tangential velocity of
wave tip along this trajectory, withct5v1R0 for steady-state rota
tion. The coordinatesdr 5r 2R0[eq/c0 and c5u2v1t measure
the radial and angular departure from steady-state rotation, res
tively. The Cartesian coordinate system (x,y) that moves with the
wave tip is also shown with they axis parallel toct . yf(x) and
yb(x) denote the instantaneous wave-front and wave-back bo
aries. Finally,d5q(u)2q(u22p) measures the radial displace
ment of the wave tip after one 2p rotation.
a
s
ize
-

mal to the]R boundary in the multidimensional paramet
space that characterizes a given excitable medium.B is there-
fore the most natural parameter to characterize this excita
ity close to this boundary, and is used throughout this pa
From an experimental standpoint,c0 andW are in principle
measurable quantities andDu can be either measured or e
timated, such that one could attempt to quantifyB directly.
Of course, in practice, the definition ofW, and thusB, be-
comes less precise whene is not small and it is simpler to
use an experimental control parameterPexpt ~such as a con-
centration! that can be varied to cross the]R boundary.
Therefore we will briefly describe in Sec. III C a more dire
way to obtain a quantitative relationship betweenB andPexpt
close to the]R boundary without the need to use Eq.~10!.

B. Rigid wave tip and slaved wave front

Close to the]R boundary, we will show that a spiral wav
in its tip region behaves as a ‘‘rigid body’’ whose motion ca
be characterized by giving twoinstantaneousquantities: the
tip tangential velocityct(t), and its rotation ratev i(t)
5ct(t)/Ri(t) whereRi(t) is the radius of curvature of the tip
trajectory as depicted in Fig. 3. Two key ingredients ma
this kinematic description possible. The first is that, near]R,
the wave shape is close to a critical finger~i.e., the broken
plane wave that simply translates without retraction or ro
tion for B5Bc) on a length scalel ;Du /(c0A12ct /c0) ~as
explained in Sec. IV C! that is large compared to the scale
the tip itself, Rtip5Du /c0. The second is that the relation
that governct andRi are established on time scales that a
both much shorter than the steady rotation period,T0
52p/v1, as discussed at the start of Sec. V and in qua
tative details in Appendix B. This separation of time scal
which makes our adiabatic treatment possible, becomes
act in the large core limitB→Bc , but, importantly, it does
not depend one being small. Therefore the present kinema
description should rigorously extend beyond the fre
boundary limit but we shall assume thate!1 in this paper to
computect .

A key difference between this description and the o
proposed in@18# should already be apparent. Namely, he
the dynamics is driven entirely by the rigid tip region~which
is just a point on the core scale!. In contrast, in the kinematic
model of@18#, the tip motion is determined by the wave fro
dynamics via a boundary condition imposed at the tip. In
present context, the dynamics of the spiral wave-front o
side the tip regionneed notbe invoked to calculate the tip
motion.

C. Tangential velocity

The tip tangential velocity is determined by the control
concentration~equivalently the spatial variation of excitabi
ity in which the wave front propagates! in the tip neighbor-
hood. To compute this velocity we exploit the fact that, clo
to the ]R boundary, the equations of motion can be line
ized around the critical finger. This allows us to obtain
solvability condition~i.e., a general condition for the exis
tence of a solution to these linearized equations! that
uniquely relates the tangential velocityct($v%) to an arbi-
trary spatial distribution ofv; this distribution is only con-
strained to deviate slightly from the rest statev0 in order for
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the wave tip to remain close to the critical finger. This so
ability condition is first used in Sec. IV B in the simple
steady-state situation where the tip propagates into a unif
controller concentration. The result of interest is

ct /c0511~B2Bc!/K, ~11!

whereK.0.63 is a numerical constant. This result impli
that on the weak excitability side of the]R boundary (B
.Bc), steady retracting waves form withct /c0

5Acr
21c0

2/c0.1, wherecr is the tip retracting speed. O
the other side (B,Bc), spirals forms withct /c0,1 and a
second relation discussed in the next subsection is need
this case to determine the rotation rate. The calculation of
tangential velocity is extended to the case of steady s
interacting spirals that propagate in a not fully recove
medium in Sec. IV D, to unsteady self-interacting spirals
Sec. V B, and to spirals in an external field in Sec. VII B.
the latter case,ct($v%,Ei ,E') depends both on the controlle
concentration and the componentsEi andE' of the external
field, respectively, parallel and orthogonal toct .

A relation betweenB and an arbitrary experimental con
trol parameterPexpt can be obtained close to the]R bound-
ary by simply measuring the slopeS of the curvect /c0 vs
Pexpt, which should be the same on both sides of]R and
presumably simpler to obtain on the retracting side. It th
follows at once from Eq.~11! that

B2Bc5KS~Pexpt2Pexpt,c! ~12!

close to]R, wherePexpt,c is the value ofPexpt where]R is
crossed. This relationship can be used to relate quantitati
the results of the rest of this paper to experiments, keepin
mind that these results are only accurate asymptotically c
to ]R and for smalle.

D. Rotation rate

The motion of the wave tip region, although rigid, mu
generally be consistent with the motion of the rest of
wave front away from the tip. On the spiral side of]R, the
tip region must necessarily rotate to accommodate the
that its tip end translates at a slower speed than the p
waves radiated outward from the core~on the other side of
]R, ct.c0 simply implies retraction of the tip!. In Sec. IV C,
we show that the tip and the far regions can be matched
the gently curved intermediate scalel , yielding a rotation
ratect /Ri , with

Ri5
Du

c0
F b

~12ct /c0!G
3/2

, ~13!

whereb.2.946 is a constant that is obtained by match
the curved tip and far regions. It should be noted that t
constant differs from the constantb8 @36# obtained by arbi-
trarily imposing a radial departure of the wave front from t
steady-state circular core trajectory as in Ref.@18#. The 3/2
exponent, however, is the same both here and in Ref.@18#
since it does not depend on details of the matching on the
scale.

Equation~13! holds both for steady rotation~in the con-
text of which it is derived in Sec. IV C! and for unsteady
-
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rotation owing to the aforementioned adiabatic approxim
tion. For steady rotation, the core radiusR0 is simply ob-
tained by substituting the expression forct from Eq.~11! into
Eq. ~13!, which yields

R05
Du

c0
F bK

~Bc2B!G
3/2

. ~14!

The generalization to self-interacting spirals is given in S
IV D.

E. Parametrization of the wave tip trajectory

Knowing how to computect and Ri gives in principle a
complete kinematic theory of the wave tip motion, since t
uniquely predicts the Euclidean trajectory of the tip in tim
However, to characterize analytically the tip dynamics in u
steady situations~such as drift, meander, etc.! it is conve-
nient to measure the instantaneous tip position by the s
dard polar coordinates (r ,u) with respect to a fixed origin a
the center of steady rotation~Fig. 3!, and to relate the tip
motion in these coordinates toct and Ri . This part of our
analysis is carried out in Sec. V A and yields a simple forc
harmonic oscillator equation

d2dr

dt2
1v1

2dr 5v1
2dRi , ~15!

where dr (t)[r (t)2R0 is the radial displacement of th
wave tip from its radiusR0 of steady rotation anddRi(t)
[Ri(t)2R0. Equation~15! is valid for a small radial dis-
placement (udr u/R0!1) and is accompanied by an indepe
dent equation for the angular displacementc(t)[u(t)
2v1t from steady rotation. For a small radial displaceme
however, the two equations are not coupled such thatdr can
be computed independently. Without forcing, the solution
Eq. ~15!, namely, a harmonic motion at frequencyv1, is a
simple superposition of the two translation modes: it giv
the tip displacement of a steady spiral which is slightly tra
lated with respect to the reference unperturbed spiral.

F. Main results

In summary, the application of the present kinema
theory contains three steps:~i! using a solvability condition
to calculatect in terms of the local controller concentration
external field, etc., with a resulting expression that depe
on the situation considered,~ii ! using Eq.~13! to expressRi
in terms ofct , and~iii ! solving Eq.~15! to obtain the radial
displacement of the tip for a given forcing, which also obv
ously depends on the situation considered. We now sum
rize the result of this procedure for the selected applicati
examined in this paper~in a different order than in subse
quent sections!.

The simplest example~Sec. VII A! is to compute the tip
motion induced by a small periodic spatially uniform vari
tion of excitabilityB(t)5B01dB sin(v1t1f). Following the
above steps, and using the fact that the perturbation is sm
we obtain at once
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d2dr

dt2
1v1

2dr 5v1
2~dR0 /dB!dB sin~v1t1f!, ~16!

where the functionR0(B) is defined by Eq.~14!, and
dR0 /dB is to be evaluated atB5B0. This resonant forced
harmonic oscillator equation has a growing sinusoidal so
tion with an amplitude that increases linearly in time, a
which thus corresponds to a spiral drift at a speedcd
5v1(dR0 /dB)dB/2, or cd5v1dR0 /dPexptdPexpt/2 in an
experiment. The action of an electric field is considered
Sec. VII B and produces a similar type of periodic forcin
that leads to spiral drift. In agreement with previous stud
@20,21,23–25# the spiral is found to drift at an angle with th
external field. This result also determines the curvatu
induced motion of a scroll filament. There the main pred
tion is that rings expand in the large core limit~i.e., the
filament tension is negative! in agreement with previous nu
merical observations in this limit~see@37# and earlier refer-
ences therein!.

In the case of meander the tip tangential velocity a
hence the forcing on the right-hand side of Eq.~15! depends
on the radial displacementdr (t)2dr (t2T0) of the tip after
one complete rotation~Fig. 3! due to the self-interaction o
the wave front with its own recovery tail. If this displace
ment is positive, the average controller concentration will
slightly more elevated in the tip region~i.e., the medium will
be slightly less excitable in this region! than if it is negative,
which then affectsct($v%) and thusRi and the forcing of the
tip. This effect leads to a differential equation with delay
the form

d2q

dt2
1v1

2q5v1
2mF„q~ t !2q~ t2T0!…, ~17!

where we have defined the dimensionless radial displa
ment q(t)5dr (t)/Rtip5c0dr (t)/Du , the parameter m
53Bc(dR0 /dB)e2T0 /tR, and F is a tanh-shaped functio
which we compute in Sec. V B. The saturation ofF at large
radial displacement is due to the fact that the controller c
centration only varies appreciably on the scale ofRtip . A
linear stability analysis of this equation in Sec. VI A yield
that the onset of meander occurs whenm exceeds a threshol
3/@8F8(0)# that depends in a singular way on the diffusivi
ratio Dv /Du ande. Namely, the functionF is nonanalytic at
0 in the pure sharp boundary limit, Eqs.~5!, ~6! of the singly
diffusive model, which sheds some light on difficulties th
were previously encountered when attempting to perform
linear stability analysis in this limit@38#. However, for a
finite interface widthADutu, small compared to the spiral ti
radiusDu /c0, the slope at the origin is finite, withF8(0);
2 ln(c0Atu /Du), such that there is a finite meander thres
old that will be typically of order unity in experiments o
simulations. In addition, this analysis predicts thatv2 /v1
51/2 at onset in the large core limit and a simple physi
interpretation of both the existence of a threshold and os
latory motion is given at the end of Sec. VI A. Slightly awa
from the large core limit, the discussion in Sec. IX leads t
modified differential equation with delay that shows th
v2 /v1 increases above 1/2 as the core radiusR0 is de-
creased, in semiquantitative agreement with numerical si
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lations. This actually provides a simple picture of the on
of quasiperiodicity~i.e., howv2 /v1 becomes irrational! as
one moves away from the large core limit.

Finally, for spirals withN arms, we obtain a system ofN
coupled differential equations with delay and with the inte
action between the arms controlled by the parametermN
53Bc(dR0 /dB)e2T0 /(NtR). An exact linear stability analy-
sis shows that, unlike for meander, there is no finite thre
old of instability. Moreover, this instability develops on
time scale proportional to 1/m2

2 for N52 and 1/mN for N
.2, such that the time necessary to observe it grows ex
nentially as the]R boundary is approached.

IV. STEADY STATES

We start by analyzing steady wave patterns of the fr
boundary problem~5!–~7!. As shown in Refs.@32,33#, when
excitability is decreased, the spiral core radius and sp
period diverge on the line]R with D5Dc(e) which marks
the lower excitability limit of spiral wave propagation in th
(e,D) plane. As described in Sec. I, on the line]R, spirals
degenerate into critical fingers that translate atc0, the plane
wave speed. ForD,Dc(e), the steady waves are retractin
fingers. Laws for the tip retraction speed and spiral tip div
gence were obtained in Ref.@34# from numerical computa-
tions in the neighborhood of the lineDc(e) for e!1. Here,
we begin by recalling the result of@33# about the line of
existence of critical fingers. We then proceed and stu
steady patterns in the neighborhood ofDc(e) by perturbation
around the critical fingers. On the retracting wave side,
determine the tangential speed of the tip as a function oD
2Dc(e) by a solvability condition@39#. This is the simplest
example of the method that we will use in more complica
situations to determine the tip tangential speed. ForD
.Dc(e), the critical finger winds up around its tip and b
comes a steady spiral rotating around a circular coreR0 at a
constant tangential speedct . We first consider the cas
whereR0 is large enough so that the spiral front interface c
be assumed to propagate in the medium rest state~i.e., the
disturbance of the medium induced by the tip previous p
sage can be neglected!. We obtain analytically the diver-
gence of the spiral radius by adding to the previous deter
nation ofct an analysis of the Burton-Cabrera-Frank~BCF!
equation@40# in the large radius limit using matched asym
totics, thus confirming the laws obtained in Ref.@34#. Fi-
nally, we determine the modification of the steady spiral p
rameters induced by the perturbation of the medi
characteristics due to previous passages of the spiral.

A. The line Dc„e… of critical fingers

We first examine the critical fingers that propagate in
shape preserving way at the pulse speedc0 on the boundary
Dc(e) in the parameter space (D,e). For a small medium
excitability, the scaling of the lineDc(e) is easily determined
by comparing two length scales@33# as reviewed in Sec
III A. First, the condition that the normal velocity vanishes
the wave tip requires that the tip radius of curvature is eq
to e/c0. This gives the order of magnitude of the distan
between the wave front and wave back. Second, the front
back interfaces should move at the same velocity. The va
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of the controller fieldv should therefore increase fromv0
5vs2D on the front interface tovs1D on the back inter-
face in a time (e/c0)/c0. This givestee/c0

2;D and, remem-
bering thatc05aD, the scalingDc(e);(e/a2te)

1/3.
A more detailed analysis is required to determine the c

stant in this asymptotic relation and the critical finger sha
that we will subsequently need. We follow Ref.@33# and
search for a steady-state finger shape translating atc0, the
isolated pulse speed. It is convenient to work in the frame
the finger with the origin at the finger tip~see Fig. 4! and to
use as length unite/c0, the finger tip radius. On the fron
interfaceYf(x), the value of the controller field is equal t
the rest state valuev0. At point x on the back interface, the
controller field value has increased tov01e@Yf(x)
2Yb(x)#/c0

2te from Eq. ~8!. Equation~5! therefore implies
that

d2Yf

dx2
5F11S dYf

dx D 2G2F11S dYf

dx D 2G3/2

, ~18!

d2Yb

dx2
5F11S dYb

dx D 2G1$12B@Yf~x!2Yb~x!#%

3F11S dYb

dx D 2G3/2

, ~19!

where Yf(x) denotes the front interface of the finger a
Yb(x) its back interface. These equations depend on
single parameterB5e/(a2teD

3) @41#. The desired solutions
should satisfy at the tip the boundary conditionsYf(0)
5Yb(0)50, dYf /dx(0)52dYb /dx(0)51`, and asymp-
totically dYf /dx(1`)5dYb /dx(1`)50.

The solution of Eq.~18! does not require any suppleme
tary condition. Atx50, it tends to zero asYf(x);A2x in
agreement with the chosen tip radius of length unity. Ax
51`, it diverges logarithmically,Yf(x);2 ln(x). In fact,
Yf(x) can be obtained analytically,

x52 arctan~v !1
2

v21
2p,

FIG. 4. The critical finger: the solution of Eqs.~18! and~19! for
B5Bc .
-
e

f

e

Yf5 lnF v211

~v21!2G , ~20!

with 1<v,1`.
On the contrary, Eq.~19! can be solved with the appro

priate boundary conditions only for a particular value of t
parameterB. The two boundary conditions atx50 entirely
determine the solution of Eq.~19! once the front interface is
determined. The solutionYb(x) should approach@Yf(x)
22/B# asx→1` to satisfy the boundary condition at infin
ity. A linearization of Eq.~19! around this asymptotic behav
ior gives a convergent mode and a divergent mode grow
as exp(ABx). So, the solution obeys the right boundary co
dition atx51` only for the special values ofB which can-
cel the prefactor of the diverging mode. This is numerica
found to happen forBc50.5353 . . . which defines the line
of existenceDc(e) of the critical fingers in the (e,D) plane.
In the following, we refer to the solution of Eqs.~18! and
~19! with B5Bc as the ‘‘critical finger shape.’’ It is plotted
in Fig. 4.

Remark.One can note that at the level of Eqs.~18! and
~19! the interface is continuous and so are its first two d
rivatives. However, its third derivative is discontinuous
the finger tip (x50,y50) since one hasYf(x)5A2x1x/3
1••• while Yb(x)52A2x1x(122Bc)/31••• ~and Bc
Þ0). This weak nonanalyticity can be cured by introduci
a small boundary layer near the tip as discussed in Appen
A.

B. Retracting fingers

We consider a medium characterized by a parameteB
5e/(a2teD

3) higher thanBc , that is, not excitable enoug
to allow for the existence of spirals. We look for steady-st
shapes propagating atct . We use as beforee/c0 as unit
length wherec05aD is the velocity of the planar front in the
considered medium. Equations~5! determining the frontyf
and backyb interfaces become

d2yf

dx2
5

ct

c0
F11S dyf

dx D 2G2F11S dyf

dx D 2G3/2

, ~21!

d2yb

dx2
5

ct

c0
F11S dyb

dx D 2G1F12B
c0

ct
@yf~x!2yb~x!#G

3F11S dyb

dx D 2G3/2

. ~22!

The solutions should satisfy at the tip the same bound
conditions as the critical fingers,yf(0)5yb(0)50,
dyf /dx(0)52dyb /dx(0)51`. Asymptotically, they
should obeydyf /dx(1`)5dyb /dx(1`)5A(ct /c0)221.
As for the critical finger, the solution of Eq.~21! for the front
interface can be obtained for any value of the ratioU
5ct /c0.1 and is given by

x5
2

U
arctan~v !2

1

UAU221
lnS v2U2AU221

v2U1AU221
D 2

p

U
,
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yf5
1

U
lnF v211

v21122Uv
G , ~23!

with U1AU221,v,1`. On the contrary, Eq.~22! for
the back interface can be solved with the correct bound
condition only ifB is chosen appropriately for each value
U. Several obtained shapes are shown in Fig. 5. In Ref.@34#,
the solution of Eq.~22! was computed in such a way fo
several values ofU close to one and it was found thatct /c0
extrapolates linearly to one whenB→Bc ,

ct

c0
511

B2Bc

K
, ~24!

with the constantK.0.63.
We show how the result~24! can be derived by analyzin

perturbatively Eqs.~21!, ~22! around the critical finger@39#.
For uct /c021u!1, the front interface of the retracting finge
yf is close to the front interface of the critical fingerYf on
distances of the finger tip small compared to (ct /c0
21)21/2. In this region, we linearize Eqs.~21!, ~22! around
the critical finger shape asyf5Yf1dyf ,yb5Yb1dyb . The
correctionsdyf ,dyb obey the inhomogeneous linear equ
tions

Lf~dyf !5
dct

c0
F11S dYf

dx D 2G , ~25!

Lb~dyb!5
dct

c0
F11S dYb

dx D 2G1F S Bc

dct

c0
2dBD

3@Yf~x!2Yb~x!#2Bcdyf GF11S dYb

dx D 2G3/2

.

~26!

We have introduceddB5B2Bc ,dct5ct2c0 and the linear
operatorsLf ,Lb which are given by

Lf5
d2

dx2
1H 2213F11S dYf

dx D 2G1/2J dYf

dx

d

dx
, ~27!

FIG. 5. Several retracting fingers (U51.05,1.02,1.01,1.005 an
corresponding values ofB50.5669,0.5479,0.5416,0.538 48) com
pared to the critical finger~bold line!.
ry

-

Lb5
d2

dx2
2a~x!

d

dx
2b~x!, ~28!

with

a~x!5H 213$12Bc@Yf~x!2Yb~x!#%

3F11S dYb

dx D 2G1/2J dYb

dx
,

b~x!5BcF11S dYb

dx D 2G3/2

. ~29!

The boundary values at the tip aredyf(0)5dyb(0)50. For
the derivatives, one obtains, using the asymptotic beha
Yf(x);2Yb(x);A2x nearx50,

ddyf

dx U
x50

5
1

3

dct

c0
, ~30!

ddyb

dx U
x50

5
1

3 Fdct

c0
~112Bc!22dBG . ~31!

As before, Eq.~25! can be integrated and one obtainsdyf
5h1dct /c0 whereh1 is the solution of

Lf~h1!511S dYf

dx D 2

, ~32!

such thath1(0)50,h18(0)51/3. Whenx→1`, h1 grows
like x2/6. The situation is different for Eq.~26!. For largex,
Lb reduces tod2/dx22Bc . So, in general,dyb grows expo-
nentially as exp(ABcx) on distances of order one muc
smaller than the region where the linearized equation~26! is
valid. It is only whendct /c0 is related in a particular way to
dB that the exponential growth is absent and thatdyb can
grow algebraically likedyf , as it should. In order to deter
mine the relation betweendct /c0 and dB that should be
imposed, we find it convenient to introduce the zero mo
j(x) of the adjoint L b

† which vanishes~exponentially! at
infinity,

L b
†~j!5

d2j

dx2
1

d

dx
@a~x!j#2b~x!j50, j~1`!50,

~33!

where the functionsa(x) andb(x) are defined by Eq.~29!. j
is uniquely defined up to a global normalization. A loc
analysis shows thatj automatically vanishes atx50 and that
it tends linearly to zero whenx→0. For definiteness, we
normalizej(x) so that its maximum value is equal to 1.
graph ofj is shown in Fig. 6. We now multiply both sides o
Eq. ~26! by j(x) and integrate overx from x1 to x2. Integra-
tion by parts gives for the left-hand side
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E
x1

x2
dxj~x!Lb~dyb!5Fj ddyb

dx
2dyb

dj

dx
2a~x!j~x!dybG

x1

x2

1E
x1

x2
dxdyb~x!L b

†~j!. ~34!

The integral on the left-hand side of Eq.~34! vanishes since
L b

† annihilatesj, Eq. ~33!. Moreover, whenx1→0 andx2

→1` the boundary terms also vanish whendyb satisfies the
correct boundary condition. Terms atx51` vanish when
dyb grows algebraically sincej(x) vanishes exponentially
There is no contribution at zero sincedyb and j(x) vanish
linearly, which compensates for the singular behavior
a(x)523/(2x)1•••. Therefore, the right-hand side of Eq
~26! has to satisfy the solvability condition,

dct

c0
@ I 11Bc~2I 21I 3!#2dBI350, ~35!

where the constantsI 1 ,I 2 ,I 3 are given by the following in-
tegrals which have been numerically evaluated:

I 15E
0

1`

dxj~x!F11S dYb

dx D 2G.2.771,

I 25E
0

1`

dxj~x!h1~x!F11S dYb

dx D 2G3/2

.3.814,

I 35E
0

1`

dxj~x!@Yf~x!2Yb~x!#F11S dYb

dx D 2G3/2

.7.708.

~36!

Equation~35! shows that the tangential velocity of the r
tracting finger tip depends linearly on the departure ofB
from Bc as stated in Eq.~24!. The proportionality constantK
is in excellent agreement with the value obtained by num
cal extrapolation in Ref.@34#.

K5Bc1~ I 12BcI 2!/I 3.0.630. ~37!

FIG. 6. Graph of the zero modej(x) of the operatorL b
† nor-

malized by imposing that the maximum value ofj(x) is one.
f

i-

Note that the values~36! of the integrals depend on the no
malization ofj but that the expression of the physical co
stantK appears as a ratio of such integrals and is thus in
pendent of this~arbitrarily chosen! normalization. It is also
important to remark that Eq.~35! shows that the tangentia
tip velocity is an appropriate quantity for a perturbative c
culation around]R since it has a smooth behavior when]R
is crossed. This should be contrasted with the retracting
velocity which decreases as the square root of the distanc
]R on the retraction side and does not appear to hav
simple continuation on the spiral side of]R.

C. Steadily rotating spirals

For B5e/(a2teD
3),Bc , steady spiral waves exist. The

tip rotates around a circular coreR0 at a constant tangentia
tip velocity ct5v1R0. WhenB→Bc , R0 diverges,ct→c0,
and the tip of the spiral becomes closer and closer to a c
cal finger. In this subsection, we determineR0 andv1 as a
function of B ~‘‘the excitability of the medium’’!. We begin
by considering spirals of radius large enough so that one
neglect the disturbance of the medium due to the spiral p
vious passage. In this case, the front interface can be
sumed to propagate in the medium rest state. The sp
shape is analyzed by decomposing it into three overlapp
regions where different approximations can be perform
Close to the tip, on distances of orderRtip5e/c0, the curva-
ture of the tip trajectory can be neglected and a transposi
of the analysis of the preceding subsection shows that
tangential velocity is linearly related todB5B2Bc by Eq.
~24!, namely,dct5dB/K ~both sides being negative now!.
Far from the tip, it is the effect of the interface curvature
the normal velocity@Eq. ~5!# which can be neglected. Th
normal velocity can be taken constant, equal toc0 and the
spiral shape is then simply determined. These two appr
mate descriptions match at a distance of orderl from the
spiral tip in an intermediate region where the interface
almost normal to the tip circle of rotation and the interfa
curvature is small. The intermediate scalel appears as the
balance between two effects. On one hand, the tip tange
velocity is smaller thanc0 by aboutv1l for purely kine-
matical reasons so thatudctu;c0l /R0. On the other hand,l
is the distance where curvature effects become small eno
to be comparable to this velocity drop. At a distancel from
its tip, the critical finger curvature is of the order 2Rtip /l 2.
This provides the alternative estimateudctu;eRtip /l 2. Com-
paring both expressions and remembering thatRtip5e/c0

gives l ;(Rtip
2 R0)1/3 and udct /c0u;(Rtip /R0)2/3. The de-

tailed analysis reported below replaces this simple orde
magnitude estimate by the precise asymptotic relation,

c02ct

c0
.bS Rtip

R0
D 2/3

, ~38!

where the numerical constantb is obtained from the first zero
a1 of Airy function Ai @42#, b5221/3a1.2.946@36#. Com-
paring Eq.~38! with Eq. ~24! determines the frequencies an
core radii of steady spirals near the lineDc(e),

R05RtipS bK

Bc2BD 3/2

, v15
c0

Rtip
S Bc2B

bK D 3/2

. ~39!
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1. Front interface

We first consider the front interface and assume that
spiral propagates in the medium rest state~this is of course
justified only if the spiral period is long enough and it
required to be sufficiently close to the line]R). The equation
for the front spiral interface is then identical to the clas
equation for the growth of screw dislocations on crystal s
faces@40#. For a steady rotation at frequencyv1 in a coun-
terclockwise direction, Eq.~5! gives for the front spiral in-
terface in polar coordinates (r ,u)

rv15c0F11S r
du f

dr D 2G1/2

1eS du f

dr
1

~d/dr !~rdu f /dr !

11~rdu f /dr !2 D ,

~40!

with the boundary condition at infinitydu f /dr→2v1 /c0.
Rescaling coordinates makes it clear that Eq.~40! depends
on the single dimensionless parameterV5v1e/c0

2. For 0
,V,0.331, it is found thatdu f /dr→1` at r 5R0 when
Eq. ~40! is integrated fromr 51`. R0 is the location of the
spiral tip and is found to increase from 0 to1` when V
decreases from 0.331 to 0. The limitV→0.331 has been
considered in previous works@29,30#. We focus here on the
other limit V→0 where the excited region width (;e/c0)
becomes much smaller than the core radius (;c0/v1). In
this limit, the front spiral interface can be separated in
three distinct regions.

~1! Far from the spiral tip~the outer region!, the interface
scale of variation isc0 /v1. Introducing the rescaled coord
natesr 5zc0 /v1 shows that the terms involving the interfac
curvature are multiplied by the small parameterV. Neglect-
ing them, Eq.~40! becomes

z
duout

dz
52Az221, ~41!

which is of course integrable. This first approximation brea
down nearz51, where the solution of Eq.~41! has a fast
variation on thez scale and the formally negligible terms a
important.

~2! Close to the spiral tip, Eq.~40! can be simplified in a
different way. One can introduce the radial distancex from
the tip circle of rotation measured in unit of the tip radi
such that r 5R01e/c0x and the tangential displaceme
ye/c05R0u f . At lowest order ine/(c0R0), Eq. ~40! be-
comes identical in these variables to Eq.~18! for the front
interface of a critical finger.

~3! These two different descriptions do not directly matc
The transition occurs in an intermediate region where
interface curvature is small and the interface tangent alm
radial. We thus assume~and checka posteriori! that dy/dx
is small and expand the square root and denominator in
~40!. This gives

ct2c0

c0
1

e

c0R0
x5

1

2 S dy

dxD
2

1
d2y

dx2
, ~42!

where the tangential tip velocityct5R0v has been intro-
duced. The different terms of Eq.~42! are of comparable
magnitude for x;(R0c0 /e)1/3,dy/dx;(e/R0c0)1/3, and
e

-

o

s

.
e
st

q.

ct /c021;(e/R0c0)2/3. In the limit Rtip5e/c0!R0, this jus-
tifies the expansion leading to Eq.~42! and the neglect of
higher-order terms. Introducing the rescaled variablej
5x@e/(2c0R0)#1/3, Eq. ~42! becomes

1

2

d2y

dj2
1

1

4 S dy

dj D 2

5j1a1 , ~43!

where we have defined

a15221/3S c0R0

e D 2/3ct2c0

c0
. ~44!

The Riccati equation~43! can be transformed into the linea
Airy equation. Matching with Eq.~41! imposes thatdy/dj
,0 whenj→1`. This imposes that the Airy function de
creases at infinity and is proportional to Ai@42#. It gives
dy/dj52Ai8(j1a1)/Ai(j1a1). Using the asymptotic be
havior @42# Ai( j);1/2p21/2j21/4exp(22/3j3/2), one indeed
checks that the obtained largej behaviordy/dj;22Aj co-
incides with the behavior of Eq.~41! nearz51. Matching
with the tip region requires that the smallj behavior of
dy/dj coincides with the asymptotic behavior of Eq.~18!
whenx→1`, namely,dy/dx;2/x2. This requiresa1 to be
a zero of Ai. Sincey(j) should be well defined for all rea
positive j it is necessarily the first one,a1522.3381 . . .
@42#. Comparing with the definition~44! of a1 directly leads
to the relation~38!.

The relationv1(R0), numerically determined in@43#, was
approximately obtained in@18,28# by assuming a radial de
parture of the front interface imposed on a fictitious inn
radiusR0. This boundary condition is equivalent to requirin
that u be maximum atR0. It is worth noting that, in the
present limit, it would simply amount to replacing the exa
value of the constanta1 by the location of the maximum o
Ai, namely, a18521.018 79 . . . @42#. Correspondingly, this
would replace the exact valueb.2.946 in Eq.~38! by b8
.1.283.

2. The back interface

The equation for the back interface reads, in polar co
dinates,

rv15S 2c01
a

v1te
~u f2ub! D F11S r

dub

dr D 2G1/2

1eS dub

dr
1

~d/dr !~rdub /dr !

11~rdub /dr !2 D . ~45!

As for the front interface, we proceed by separately anal
ing three regions. We consider first the tip region whi
plays the dominant role here. Introducing as before the
ordinatesx andy such thatr 5R01e/c0x,ye/c05R0ub , Eq.
~45! becomes at lowest order ine/c0R0 identical to Eq.~22!
describing the back interface of retracting fingers~except that
now ct,c0 andB,Bc). As in this previous case, requirin
that the back interface does not diverge exponentially fr
the front interface relatesct /c0 to B. For B close toBc , one
can linearize around the critical finger and follow the pre
ous analysis~25!–~37! which leads to Eq.~24!. The compari-
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son of Eqs.~24! and ~38! gives the expression~39! for the
spiral core radius and frequency of rotation as a function
B.

As one moves away from the tip, the backYb of the
critical finger relaxes exponentially towardYf22/Bc on the
scale of the finger tip width. The equations describing
back and front interfaces are thus essentially identical in
intermediate and far regions and the analysis of Sec. IV
applies as well to the back equation.

D. Steady self-interacting spirals

The analysis of the preceding section applies when
spiral periodT052p/v1 is long enough compared to th
recovery time constanttR so that the front interface can b
assumed to propagate in the medium rest state. This ap
for D sufficiently close toDc(e) but as the medium excit
ability increases the spiral radius decreases and the fron
terface begins to feel the medium disturbance due to
spiral previous passages. This eventually leads to spiral
ander as we show in the next section. As a preliminary s
we analyze here the influence of this medium modificat
on the steady spiral parametersR0 andv1.

The concentration of the controllerv on the front and
back interfaces follows from Eqs.~8! and ~7!. For a spiral
rotating steadily at frequencyv1 in a counterclockwise di-
rection, they are given by

v f~r !5v01dv f~r !, ~46!

vb~r !5v f~r !1
u f~r !2ub~r !

v1te
, ~47!

with

dv f~r !5
u f~r !2ub~r !

v1te

3
exp$2@2p1ub~r !2u f~r !#/v1tR%

12exp$2@2p1ub~r !2u f~r !#/v1tR%
.

~48!

Near the lineDc(e), v1 tends to zero,dv f(r ) becomes neg-
ligible, and the concentration ofv on the front interface can
be taken equal tov0 as done in the preceding subsectio
This approximation is justified as long asdv f induces a
change in the front velocity which is negligible compared
the differencect2c0 between the tip velocity andc0. That is,
for exp(22pR0 /c0tR)!dct /c0 or using the estimate~39!,
exp@22pRtip /c0(bK/Bc2B)3/2#!Bc2B. Therefore, one
can neglect the perturbation of the medium as long asBc
2B!e2/9 ~up to logarithmic corrections! or equivalentlyD
2Dc!e5/9. The results~39! are modified whendv f(r ) be-
comes comparable todct . The transition regime where
dv f(r ) is still small can be analyzed along the lines of t
previous subsections,
f

e
e
1

e

ies

in-
e
e-
p,
n

.

rv15c@v01dv f~r !#F11S r
du f

dr D 2G1/2

1eS du f

dr
1

~d/dr !~rdu f /dr !

11~rdu f /dr !2 D , ~49!

rv152c@vb~r !#F11S r
dub

dr D 2G1/2

1eS dub

dr
1

~d/dr !~rdub /dr !

11~rdub /dr !2 D . ~50!

In the tip region, it is useful to introduce as previously t
coordinatesx and y, with r 5R01e/c0x,ye/c05R0u. At
lowest order ine/(c0R0), Eq. ~49! becomes

d2yf

dx2
5

ct

c0
F11S dyf

dx D 2G2F12
a

c0
dv f~r !GF11S dyf

dx D 2G3/2

.

~51!

We are interested in the parameter region whereadv f(r )/c0
is of the same order asdct /c0. As found above, this happen
when the spiral period is large but only logarithmically ine.
This allows us to expand the exponential in Eq.~48! and to
obtain the expression of the medium perturbation as a fu
tion of the critical finger shape,

a

c0
dv f~r !5Bc@Yf~x!2Yb~x!#expS 2

2pR0

c0tR
D . ~52!

We expand the spiral front in the tip region around t
critical finger shape asyf(x)5Yf(x)1dyf(x). The correc-
tion dyf(x) obeys the equation

Lf~dyf !5
dct

c0
F11S dYf

dx D 2G1Bce
22pR0 /c0tR

3@Yf~x!2Yb~x!#F11S dYf

dx D 2G3/2

, ~53!

where the linear operatorLf is defined by Eq.~27!. dyf can
be expressed as

dyf5
dct

c0
h11Bce

22pR0 /c0tRhv,0 , ~54!

whereh1 is defined in Eq.~32!. hv,0 obeys

Lf~hv,0!5@Yf~x!2Yb~x!#F11S dYf

dx D 2G3/2

, ~55!

with the boundary conditionshv,0(0)50,(dhv,0 /dx)(0)
52/3.

In the same way, we obtain, in the tip region, the lowe
order correctiondyb to the back interface of the critical fin
ger Yb(x),



e
r

-

re
om

-
n

in

t t

ac

age
or-
-

ic
f a

e

pos-
ady
ady
of

spi-
e of
ave

o be
nd

se.
m

r

’

g a

c
e
dy

s

-

this
is
n-

of
oc-
n-
he
ion
n

lin-
ring

5084 PRE 60VINCENT HAKIM AND ALAIN KARMA
Lb~dyb!5
dct

c0
F11S dYb

dx D 2G1F S Bc

dct

c0
2dB

2Bce
2(2pR0 /c0tR)D @Yf~x!2Yb~x!#2Bcdyf G

3F11S dYb

dx D 2G3/2

, ~56!

where the linear operatorLb is defined by Eq.~28!. Equation
~56! is similar to Eq.~26! and can be analyzed in the sam
way. The solvability condition that should be obeyed in o
der fordyb not to diverge exponentially asx→1` is found
by integrating both members of Eq.~56! with the zero mode
j(x) of the adjoint ofLb . This gives the following generali
zation of Eq.~24!:

K
dct

c0
5dB1BcJ expS 2

2pR0

c0tR
D , ~57!

whereK.0.630@Eq. ~37!# and the constantJ is

J511Bc

I v,0

I 3
.1.872. ~58!

I 3 is defined by Eq.~36! and I v,0 is given in terms ofj(x)
Eq. ~33!, andhv,0 , Eq. ~55!, by

I v,05E
0

1`

dxj~x!hv,0F11S dYb

dx D 2G3/2

512.553. ~59!

To complete the analysis, it remains to match the tip
gion to the outer part of the spiral. As one moves away fr
the tip, the finger widthYf(x)2Yb(x) relaxes exponentially
toward its asymptotic value 2/Bc on the scale of the tip re
gion. Therefore in the intermediate and far regio
adv f(r )/c0, Eq. ~52!, is equal to lowest order to
2 exp(22pR0 /c0tR) and the matching equation becomes
stead of Eq.~42!

ct2c0

c0
12 expS 2

2pR0

c0tR
D1

e

c0R0
x5

1

2 S dy

dxD
2

1
d2y

dx2
.

~60!

Matching with the tip region gives in a similar way

221/3S c0R0

e D 2/3Fct2c0

c0
12 expS 2

2pR0

c0tR
D G

5a1.22.338 . . . . ~61!

The difference between Eqs.~61! and~38! is simply thatct is
not compared to the velocity of a single planar pulse bu
the velocity of a train of pulses of wavelength 2pR0 ~the
asymptotic wavelength of the spiral to lowest order!. Com-
paring Eqs.~57! and ~61! determines the radiusR0 of a
steadily rotating spiral as a function of the medium char
teristicsB,

Bc2B5KbS e

c0R0
D 2/3

1~BcJ12K !expS 2
2pR0

c0tR
D .

~62!
-

-

,

-

o

-

The medium disturbance due to the spiral previous pass
has two distinct effects which are comparable to lowest
der: ~1! the medium ‘‘excitability’’ is reduced in the tip re
gion, which modifies the tip velocity@Eq. ~57!#, and~2! the
tip velocity should be compared to the velocity of a period
train of planar waves which is slower than the velocity o
single planar pulse.

V. DERIVATION OF KINEMATIC THEORY

We consider now the spiral dynamics in the vicinity of th
line Dc(e) ~for e!1). In this limit, several simplifying fea-
tures made the previous analysis of the steady states
sible. These still hold when one is interested in an unste
motion taking place on a time scale comparable to the ste
rotation period which is long compared to the time scales
the internal modes of the wave tip.

~i! The dominant effect which shapes both the steady
rals and retracting finger tips is the curvature dependenc
the normal velocity. As a consequence, the shape of a w
tip is close to a critical finger up to a distancel from the tip
where the curvature effects have become small enough t
comparable to the velocity difference between the tip a
planar front velocity, namely, whenc02ct;eRtip /l 2

@where we have evaluated the curvature2d2Yf /dx2

;Rtip /l 2 at x;l using the asymptotic behaviorYf /Rtip

; ln(x/Rtip) for x/Rtip@1]. This yields the relationl

;Rtip /A12ct /c0 that remains also true in the unsteady ca
The motion of this ‘‘solid’’ shape can be determined fro
the knowledge of its instantaneous tangential velocityct and
of its instantaneous rotation ratev obtained by extending ou
previous analysis of the steady states.

~ii ! The tangential velocityct depends on the ‘‘average’
concentration of the controllerv in the vicinity of the tip.
The precise definition of the average is obtained by usin
solvability condition which generalizes Eqs.~35! and ~57!.

~iii ! A tangential velocityct smaller than the asymptoti
normal velocityc0 of the wave gives rise to a rotation of th
solid tip at a ratev which can be estimated as in the stea
case. As stated above, the wave tip has a solid character~i.e.,
is close to a critical finger shape! up to a distancel

;Rtip /A12ct /c0 from the tip. Since kinematics require
that vl ;c02ct , one obtains for the rotation ratev
;c0 /Rtip(12c0 /ct)

3/2. As shown in Appendix B, this rela
tion is established on the time scale;Rtip /(c02ct) much
shorter than the steady rotation period. Therefore, on
latter slow time scale, the slowly varying rotation rate
linked in an adiabatic manner to the slowly varying tange
tial velocity by the same relation, Eq.~38! or ~61!, which
relates the steady-state frequency to the tip velocity.

We begin our analysis by considering the kinematics
the wave tip motion. We then compute the tangential vel
ity of the tip as a function of the concentration of the co
troller v in the medium left by previous passages of t
wave. As a result, we obtain an ordinary differential equat
with delay which describes the motion of the wave tip. A
analysis of this equation at the linear and the weakly non
ear levels determines the characteristics of the meande
instability near threshold in the weak excitability limit.
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A. Parametrization of the wave tip motion

We use polar coordinates (r ,u) with the origin at the
center of the circular steady spiral core. The wave tip mot
is determined by its tangential velocityct($v%), a functional
of the ~space- and time-dependent! controller concentration
which will be computed in the next subsection, and by
rotation rate of the shape~or, equivalently, by the radius o
curvature of the tip trajectory!. We use a complex notatio
z(t)5r (t)exp(iu) to denote the tip position. Then, the t
velocity is użu and the shape rotation rate Im(z̈zG /użu2) where
time differentiation is denoted by a dot andz̄ is the complex
conjugate ofz. The tip motion is thus determined by the tw
equations

użu5ct~$v%!, ~63!

Im~ z̈zG /użu2!5ct~$v%!/Ri@ct~$v%!#, ~64!

where at this stagect($v%) can be thought of as a give
function of time. The instantaneous radius of rotationRi is a
function of ct($v%) given to lowest order in the interactio
parameter by Eq.~61!,

S c0Ri

e D 2/3Fct2c0

c0
12 expS 2

2pR0

c0tR
D G52b. ~65!

We will actually find that the meander threshold occurs
fore a significant modification of the steady-state radius
the interaction so that Eq.~65! can be replaced by the sim
pler Eq.~38!,

Ri@ct#.
e

c0
S bc0

c02ct
D 3/2

. ~66!

We consider the motion of a spiral tip which is displac
from its steady-state positionz5@R01eq(t)/c0#eiv1t1c(t)

~see Fig. 3!. We restrict ourselves to displacements of the
which are comparable to the tip radius of curvaturee/c0 @i.e.,
q(t);1# and therefore small compared to the radius of
steady coreR0. As a consequence of the tip displaceme
the controller concentration and thusct($v%) and Ri depart
slightly from their steady-state values,ct($v%)5ct

0

1dcq($v%),Ri5R01dRi .
We assume~and will checka posteriori! that the time

scale of the unsteady motion is of the order of the stea
state periodT052p/v1. We expand Eqs.~63! and ~64! in
the small parametere/(c0R0) and keep only the dominan
terms, użu5v1R0@11ċ/v11qe/(c0R0)1•••#,Im(z̈zG /użu2)
5v1@11ċ/v12eq̈/(c0v1

2R0)1•••#. Equation ~63! gives
therefore at lowest order ine/(c0R0)

ċ5
dcq

R0
2

e

c0R0
v1q, ~67!

which shows thatċ/v1;e/(c0R0). Using this scaling, Eq.
~64! becomes at lowest order

2
e

c0R0

q̈

v1
1ċ5

dcq

R0
2ct

0dRi

R0
2

. ~68!
n

e

-
y

e
,

y-

We obtain the equation for the radial motion of the tip
substituting in Eq.~68! the expression~67! of ċ,

q̈1v1
2q5v1

2dRic0 /e. ~69!

Finally, it is convenient to use the tip angular positionu
5v1t1c(t) instead of time. To lowest order inq/R, this
simply gives

d2q

du2
1q5

c0Ri8@ct
0#

e
dcq , ~70!

with

c0Ri8@ct
0#

e
5

3

2bc0
S c0R0

e D 5/3

~71!

from a differentiation of Eq.~65!. In order to have a closed
equation forq, it remains to expressdcq in terms of the
previous positions of the wave. We now proceed to this ta

B. Computation of the tangential tip velocity
for self-interacting spirals

We consider successive passages of the wave tip by
angular positionu. The successive radial displacements
the tip are . . . ,eq(u22p)/c0 ,eq(u)/c0 ,eq(u
12p)/c0 , . . . . Let us consider the passage at the posit
R01eq(u)/c0 in the Cartesian coordinate system (x,y) at-
tached to the wave tip~see Fig. 7! in which we choose to
measure lengths in units ofe/c0 . The controller concentra
tion v f(x;u) in the medium just ahead of the front interfac
is related by the controller recovery kinetics Eq.~8! to the
controller concentration left just behind the back interfa
vb(x;u22p) at the previous passage. At dominant order

FIG. 7. Schematic plot illustrating~a! the variation of the con-
troller field v on the instantaneous wave front,v f ~solid line!, re-
sulting from the previous passage of the spiral wave at the s
angular position with the tip displaced radially outwards byd. The
dashed line in~a! indicates the variation ofv on the wave back,vb ,
at the time of the previous passage of the spiral. The solid
dashed line in~b! represent the spiral boundary at the present ti
~solid line! and at its previous passage~dashed line!. Note that the
excitability averaged along the instantaneous wave front is hig
than for steady-state rotation due to the radial displacement a
one rotation. Our formalism provides a rigorous procedure for c
culating how the instantaneous tangential velocity of the wave
changes in response to this spatially varying excitability.



or
f t

t

-
io

vi

o

t

-

vi
o

n

l

5086 PRE 60VINCENT HAKIM AND ALAIN KARMA
e/(c0R0), one can neglect the tip width compared to the c
perimeter and the time interval between two passages o
spiral by the same angular position can be taken equal to
steady spiral periodT0,

v f~x;u!2v05expS 2
T0

tR
D

3@vb„x1q~u!2q~u22p!;u22p…2v0#.

~72!

In Eq. ~72!, note that v f(x;u) is related tovb„x1q(u)
2q(u22p);u22p… since the argument inv f refers to a
frame attached to the wave tip with origin atR01eq(u)/c0
whereas the origin of the coordinate forvb is at R01eq(u
22p)/c0.

The controller concentrationsv f andvb at the same pas
sage are also simply related by the controller product
equation in the excited region~8!,

vb~x;u!5v f~x;u!1e
yf~x!2yb~x!

c0ctte
. ~73!

Iterating back in time Eqs.~72! and~73!, we see thatv f(x;u)
depends in principle on the positions of the tip, at all pre
ous passages by the angular positionu. However, the
memory of the positionq(u2n2p) is suppressed by thenth
power of the small parameter exp(2T0 /tR). Therefore, to
dominant order the controller concentration only depends
the position of the tip at the previous passage,

v f~x;u!5v01ee2T0 /tR
yf„x1d~u!…2yb„x1d~u!…

ctc0te

3Q„x1d~u!…, ~74!

where we have defined the relative displacement of the
between its two passagesd(u)5q(u)2q(u22p). Q is the
usual Heaviside step function,Q(x)50 for x,0 andQ(x)
51 otherwise. Equation~74! determines the controller con
centration on the front interface atu as a function ofq(u)
2q(u22p). It is now an easy task to generalize the pre
ous computations and obtain the tip tangential velocity c
responding to this concentration.

As for steady interacting spirals, we obtain for the fro
interface in the tip region

d2yf

dx2
5

ct

c0
F11S dyf

dx D 2G2F12
a

c0
@v f~x;u!2v0#G

3F11S dyf

dx D 2G3/2

. ~75!

The only difference with Eq.~51! is thatdv f5v f(x;u)2v0
is now given by Eq.~74!. Expanding Eq.~75! around the
critical finger shape,yf5Yf1dyf , one obtains, as before,
e
he
he

n

-

n

ip

-
r-

t

Lf~dyf !5
dct

c0
F11S dYf

dx D 2G1Bce
2T0 /tR@Yf„x1d~u!…

2Yb„x1d~u!…#Q„x1d~u!…F11S dYf

dx D 2G3/2

,

~76!

with the solution

dyf5
dct

c0
h11Bcexp~2T0 /tR!hv,d(u) . ~77!

The linear operatorLf is defined by Eq.~27!, h1 is defined in
Eq. ~32!, andhv,d is the solution of

Lf~hv,d!5@Yf~x1d!2Yb~x1d!#Q~x1d!F11S dYf

dx D 2G3/2

,

~78!

which generalizes Eq.~55!, with the boundary conditions at
x50, hv,d(0)50,hv,d(x);Ax/2@Yf(d)2Yb(d)#Q(d) for
x!1.

Similarly, the back interface equation in the tip region is

d2yb

dx2
5

ct

c0
F11S dyb

dx D 2G1H 12
a

c0
@v f~x;u!2v0#

2
ea

ctc0
2te

@yf~x!2yb~x!#J F11S dyb

dx D 2G3/2

.

~79!

After linearization around the back interface of the critica
finger,yb(x)5Yb(x)1dyb(x), one obtains for the correction
dyb ,

Lb~dyb!5
dct

c0
F11S dYb

dx D 2G1H S Bc

dct

c0
2dBD

3@Yf~x!2Yb~x!#2Bce
2T0tR$Yf„x1d~u!…

2Yb„x1d~u!…%Q„x1d~u!…2Bcdyf J
3F11S dYb

dx D 2G3/2

. ~80!

Multiplying both sides of Eq.~80! by the zero modej(x) of
the adjoint ofLb and integrating fromx50 to 1` gives

dct

c0
@ I 11Bc~ I 32I 2!#5dBI31Bce

2T0 /tR@ I 3,d(u)1BcI v,d(u)#,

~81!

where the definite integralsI 1 ,I 2 ,I 3 have been defined in Eq.
~36! and I 3,d ,I v,d are given by

I 3,d5E
0

1`

dxj~x!@Yf~x1d!2Yb~x1d!#Q~x1d!

3F11S dYb

dx D 2G3/2

,
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I v,d5E
0

1`

dxj~x!hv,dF11S dYb

dx D 2G3/2

. ~82!

Finally, this gives the tangential tip velocity as a function
the tip displacement,

dct

c0
5

dB

K
1

Bc

K
e2T0 /tR$J1F„q~u!2q~u22p!…%,

~83!

where the constantsK.0.630 andJ.1.872 are defined in
Eq. ~37! and Eq. ~58!. The function F(d)[@(I 3,d
1BcI v,d)/I 32J# vanishes atd50 and is plotted in Fig. 8
@44#.

Comparing Eq.~83! with Eq. ~57! for the steady case
shows that the change in tangential velocity due to the
displacement is

dcq5c0

Bc

K
e2T0 /tRF„q~u!2q~u22p!…. ~84!

C. Computation of the tangential velocity in other cases

We conclude this section by emphasizing that, althou
the present kinematic theory is quite general, the precise
pression for the tangential tip velocity that is to be used
conjunction with Eq.~70! depends on the application a
hand. For example, Eq.~84! above is valid for self-
interacting spirals without external forcing and is therefo
perfectly suited to analyze meander in the next section
interacting multiarmed spirals with a minor modificatio
given in Sec. VIII. For the non-self-interacting spiral with a
excitability that varies slowly in space or time~Sec. VII A!,
one can use directly the results for steady-state rotation@Eq.
~24!#, whereas under the action of an external field~Sec.
VII B ! one needs to compute a different expression for
tangential velocity. The general procedure, however, is cl

FIG. 8. Graph of the spiral self-interaction functionF(d) vs tip
displacementd for different controller diffusion lengths:l D50
~solid line!, l D51 ~long-dashed line!, and l D53 ~short-dashed
line!. The generalization ofF for finite controller diffusion is con-
sidered in Sec. VI A and Appendix C.
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In each case, the tangential velocity depends on the ave
controller variable in the tip region and can be compu
from a solvability condition.

VI. MEANDER

In this section we analyze the classic meandering insta
ity in a linear and nonlinear regime. Substitution of Eq.~84!
in Eq. ~70! expresses the right-hand side of Eq.~70! as a
function of q(u)2q(u22p) and provides the differentia
equation with delay governing the tip motion

d2q

du2
1q5mF„q~u!2q~u22p!…. ~85!

The parameterm is given by

m5
3Bc

2bK S R0c0

e D 5/3

exp~2T0 /tR!. ~86!

Values of m of order unity are reached whe
(R0c0 /e)5/3exp(2T0 /tR);O(1). In this parameter regime
one can use the simple formula~39! to estimate the spira
parameters since in Eq.~62! the correction term~the second
term on the right-hand side! is of order (R0c0 /
e)2/3exp(22pR0 /c0tR);O(1) compared to the first term o
the right-hand side and therefore smaller bye/(R0c0). This
provides the explicit expression ofm in terms of the param-
eterB which characterizes the medium

m5
3Bc~bK!3/2

2~Bc2B!5/2
expF2

2pe

c0
2tR

S bK

Bc2BD 3/2G . ~87!

A. Linear stability analysis and instability criterion

We begin by studying the linear stability of Eq.~85!
aroundq50, that is, the linear stability of steady rotatio
For q!1, one obtains

d2q

du2
1q5a@q~u!2q~u22p!#, ~88!

where we have introduceda5mF8(0). Seekingq under the
form q5A exp(su) gives the eigenvalue equation

s2115a@12exp~22ps!#. ~89!

For any a, s656 i are isolated solutions of Eq.~89!.
They simply correspond to the two translation modes of
spiral: for a steady spiral which is slightly displaced from t
origin and centered at (x0 ,y0) with x0!R,y0!R, the dis-
tance of the wave tip to the origin varies sinusoidally asq
5uz01R0exp(iu)u2R05x0cosu1y0sinu.

The other solutions of Eq.~89! vary with a. For small
a.0, the right-hand side of Eq.~89! is comparable to its
left-hand side only if the real part ofs is large and negative
that is, Re(s);21/2p ln(a). Therefore, for smalla, all ei-
genvalues~different from the two translation modes! have a
negative real part and the steady rotation is stable. Asa is
increased, the eigenvalues move continuously in the com
plane. An instability occurs when the real part of some
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5088 PRE 60VINCENT HAKIM AND ALAIN KARMA
them traverses zero and becomes positive. This happe
the critical valuea5ac where Eq.~89! has a purely imagi-
nary roots5 iV, namely, for

ac@12cos~2pV!#512V2, ~90!

acsin~2pV!50, ~91!

Eq. ~91! requires thatV be a half integer. Equation~90! can
therefore be rewritten as 12V25ac@12(21)2V#, the only
solution of which is, forac.0, V561/2,ac53/8.

We therefore conclude that for 0,a,ac all eigenvalues
different froms6 have a negative real part. Asa increases
pastac53/8, a couple of eigenvalues traverse the imagin
axis and acquire a positive real part. The valuea5ac is thus
the threshold of a Hopf bifurcation and corresponds to
meander onset with a frequency ratio at thresholdv2 /v1
51/2. This ratio is consistent with the extrapolation to in
nite core radius of numerical simulation results as shown
Fig. 9.

It is interesting to note that asa is further increased, the
frequency of the two linearly unstable modes decreases
the two unstable eigenvalues become purely real fora.a r
„a r is simply determined as the value ofa for which Eq.
~89! has a doubly degenerate root,aR5(s r /p) exp(2psr)
with s r

2115(s r /p)@exp(2psr)21# which givess r.0.375
and a r.1.260…. This may explain why a previous analys
performed at smalle, but away from]M @29#, yielded only
real unstable modes instead of complex conjugate eigen
ues as expected from a Hopf bifurcation.

Given the expression~87! of the constantm, the criterion
for meander onsetac5mF8(0)51/2 implies that, for small
e, the meander boundaryDm(e) lies close in the (e,D) plane
to the critical finger boundaryDc(e) ~see Fig. 1! with Dc
2Dm;e5/9/ ln2/3@e5/9/F8(0)#.

In the pure sharp boundary description with no diffusi
of the controllerv field, the behavior of the functionF is
nonanalytic at short distanceF(d);20.576d ln(udu) for d
!1 as shown in Appendix C. This implies that, in this co

FIG. 9. Plot ofv2 /v1 vs c0 /eR0 obtained by simulations o
FitzHugh-Nagumo kinetics withf (u,v)53u2u32v and g(u,v)
5u2d ~solid line and circles!. c05(d323d)/21/2. The dashed line
represents the extrapolation to the asymptotic limitv2 /v151/2
predicted by our analysis. These simulations were carried out u
a second-order accurate direction implicit scheme withdx/e
50.33 anddt/e50.1. The inset shows an example of a large c
meander pattern fore50.180 andd521.4, wherev2 /v1.0.67.
at

y

e
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text, the onset of meander occurs right at the critical fin
boundary. However, when one starts from the full reactio
diffusion equation~3!, ~4!, the interface has a finite width o
the order ofe. This eliminates any short distance nonana
ticity and cutoff the divergence ofF8(d) at d;D;e1/3. This
gives the estimate F8(0);2 ln(e) and Dc2Dm
;e5/9/u ln(e)u2/3.

The nonanalyticity ofF also disappears if the slow fieldv
diffuses, that is, if instead of Eq.~6! one has

] tv5ge¹2v1g„u6~v !,v… in D 6. ~92!

For a sufficiently small diffusion constantg, one can neglect
entirely the diffusion in the excited regionD 1 and consider
only a radial diffusion ofv in D 2. The controller concen-
tration on the front spiral interface in the tip region is then
smoothened version of Eq.~74!,

v f2v05
ee2T0 /tR

c0cttE
E

0

1` dx8

Apl D

e2[x1d(u)2x8] 2/l D
2

3@Yf~x8!2Yb~x8!#, ~93!

vb5v f1e„Yf~x!2Yb~x!…/~c0cttE!. ~94!

The finite diffusion lengthl D5A4egT0c0 /e removes the
short distance analyticity and gives a finite first derivative
F at the origin which decreases with increasingl D as plotted
in Fig. 10 ~see also Appendix C!. This decrease of stability
with a decrease ofl D qualitatively agrees with the numerica
results of@45#. Of course, diffusion controls the stability onl
if l D is much larger than the interface width~or the width of
the tip boundary layer!. When it is much smaller, stability is
controlled by finite interface width effects as discuss
above. When the two effects have comparable magnitu
the numerical results of@45# suggest that more complex sta
bility diagrams are possible~i.e., there is a region of reen
trant stability!. It would be interesting to see if this could b
explained by a more complete computation ofF taking into
account both finite interface effect and diffusion ofv.

ng

e

FIG. 10. Derivative atd50 of the spiral self-interaction func
tion F(d;l D) vs the diffusion lengthl D . The dashed line shows
the large-l D @Eq. ~C26!# asymptotic behavior.
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We conclude this subsection with a simple interpretat
of the obtained results. The existence and magnitude of
instability threshold can be understood by considering a
placement of the wave tip by a small distanced towards the
outside of its steady circular trajectory. Since the outside
the core is slightly less excitable than the inside, this outw
displacement will cause the spiral tip to propagate in a l
excitable medium and to rotate on a new larger radiusRi
5R01dRi.R0. The fact thatdRi.0 by itself is not suffi-
cient to create an instability. It is only ifdRi is larger than
;d that the displacement of the wave tip can be amplifi
and meander can appear. The excitability change due to
displacementd is udBu;d/Rtipe

2T0 /tR where the exponentia
factor simply reflects the global attenuation of excitabil
variations between two passages of the wave. This excita
ity change leads to a variation of the rotation radiusdRi
;dR0 /dBdB. Thus, dRi /d;(dR0 /dB)/Rtipe

2T0 /tR;m
and the onset of meander occurs form of order unity in
agreement with the above stability analysis. The period d
bling like character of the unstable motion~i.e., v2 /v1
51/2) can also be attributed to the radial gradient of ex
ability at the edge of the spiral core. A wave tip displac
outward from the center at a given passage will propagate
its next passage, in a medium more excitable than the
produced by steady rotation. This will cause the tip to e
ecute this second turn on a smaller radius and thus, to pr
gate again in a less excitable medium and with a larger
dius at the next cycle, leading to the period doubli
behavior. As we shall discuss in Sec. IX, this picture
modified by finite core effects that roughly make trajector
of larger radius take a longer time to complete one rotati
This effect causes the spiral tip to return sooner inside
core and, in turn, leadsv2 /v1 to increase away from 1/2
with decreasingR0.

B. Nonlinear dynamics

We now carry out a standard weakly nonlinear analysis
the wave tip equation of motion~85! and show that the bi-
furcation to meander is supercritical in agreement with ex
ing numerical studies of reaction-diffusion models@14,15#.
This analysis also allows us to characterize more preci
the epicyclelike trajectories of the wave tip in the large co
limit. Next, we integrate Eq.~85! numerically and explore
the nonlinear regime further away from the bifurcation poi

1. Weakly nonlinear analysis

To carry out the weakly nonlinear analysis, we first e
pand the functionF on the right-hand side of Eq.~85! up to
cubic terms, which yields the equation

d2q

du2
1q5aDq1G~Dq!22b~Dq!3, ~95!

where we have defined

Dq[q~u!2q~u22p! ~96!

and the constants

a5mF8~0!, ~97!
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G5mF9~0!/2, ~98!

b52mF-~0!/6. ~99!

In writing Eq. ~95!, we have supposed that the nonanalytic
of F in the pure sharp boundary limit has been taken care
either by taking into account finite interface width effects
by a small diffusion ofv @e.g., for l D51 one hasF8(0)
.1.12,F9(0)52.81022,F-(0).21.1#. Note, however, that
Eq. ~85! is well defined even for the nonanalytic sha
boundaryF. We shall comment in the next subsection on t
small amplitude behavior in this case. Equation~95! is valid
in a regime where the parameter

m[a2ac , ~100!

which defines the distance above the onset (ac53/8) of the
meandering instability, is small. Next, we seek perturbativ
for time periodic solutions of Eq.~95! of the form

q~u!5q01 (
n51

`

AneinVu1c.c., ~101!

where as beforeV5v2 /v1 is the ratio of the Hopf fre-
quency at the meander bifurcation and the primary ang
rotation frequency. Substituting Eq.~101! into Eq. ~95! and
focusing on the first two modes (n51 andn52), we obtain
at once that

~2V211!A15a~12z!A112GA2Ā1~12 z̄ !~12z2!

23b~12z!2~12 z̄ !A1uA1u2, ~102!

~24V211!A25G~12z!2A1
21a~12z2!A222b~12z!

3~12 z̄ !~12z2!A2uA1u2, ~103!

where we have defined

z5e2 i2pV ~104!

and z̄, Ān denote the complex conjugates ofz, An , respec-
tively. EliminatingA2 between the above two relations, an
neglecting the terms proportional to (12z)2(12 z̄)A2uA1u2
on the right-hand side of Eq.~102! ~which can be checked to
be of higher order at the end!, we obtain that

V2211a~12z!1F2G2
~12 z̄ !~12z!2~12z2!

124V22a~12z2!

23b~12z!2~12 z̄ !G uA1u250. ~105!

The condition that the real and imaginary parts of the le
hand side of the above equation must vanish independe
provides two independent relations that determineV andA1.
Next, expanding Eq.~105! to first order in the frequency
shift V21/2, we obtain
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5090 PRE 60VINCENT HAKIM AND ALAIN KARMA
23/412a1~12 i2pac!~V21/2!

2F24b1
16iG2p

11 iacp
G uA1u250. ~106!

The conditions that the real and imaginary parts of the ab
equation must vanish lead after simple algebraic manip
tions to the relations

uA1u5Ac1m, ~107!

V21/252c2m, ~108!

wherec1 andc2 are constants defined by

1/c1512b1
G2

3

9p2132

11~3p/8!2
, ~109!

c25
64c1G2

3@11~3p/8!2#
. ~110!

Equation~103! implies that at leading order inm,

A25
GA1

2

~1/22V!~11 i3p/8!
~111!

or, using Eqs.~107! and ~108!,

uA2u5
3

64G
A11~3p/8!2. ~112!

In addition, substituting Eq.~101! into Eq. ~95!, one obtains
for n50 thatq058GuA1u258Gc1m. It is simple to work out
that higher-order terms in the present expansion must s
as An;mn/2 for n odd andAn;mn22 for n even. Note that
the expansion of Eq.~85! leading to Eq.~95! remains justi-
fied becauseDq(u) vanishes asm→0 even thoughA2 re-
mains of order unity„i.e., A2$exp@i2Vu#2exp@i2V(u22p)#%
;c2m in this limit….

Let us now examine the meander trajectory of the wa
tip. For this purpose it is convenient to define the dimensi
less coordinateZ5X1 iY5Reiu/Rtip , which is scaled by the
tip radiusRtip5e/c0, and is given by

Z5X1 iY5~r01q!ei (u1c), ~113!

dc/du52~q2q0!/r0 , ~114!

where we have defined the scaled steady-state radiur0
5R0Rtip . We have subtracted theu-independent part o
q(u) which gives a shift ofv1 of O(q0 /r0) @Eq. ~67!#.
Since 1/r0!1, we can expand the above relations to fi
order inc, which yields

X1 iY5S r01q2 i E ~q2q0!du Dei (12q0 /r0)u1 ic0.

~115!

Since the phase factorc0 corresponds to a translation of th
center of rotation, we can setc050, which yields the rela-
tion
e
a-

le

e
-

t

X1 iY5r0eiu1 (
n51

` F ĀnS 11
1

nV Dei (12nV)u1An

3S 12
1

nV Dei (11nV)uG , ~116!

where the amplitudesAn dictate the meandering motion o
the tip.

Note that in deriving Eq.~116! we have only assumed tha
q/r0 is small, such that this equation is not restricted to
asymptotic large core limit whereV51/2 at the bifurcation.
In fact, in the weakly excitable limit that is typically acce
sible in simulation,V is larger than 1/2 at the bifurcatio
point due to finite core radius corrections;1/r0 that modify
Eq. ~85! as discussed in Sec. IX@see, e.g., Eq.~165!#. In this
case, the bifurcation is not resonant~i.e., 2v2Þv1), and
A2;m near onset. Equation~116! implies that in this generic
case, relevant for usual simulations and experiments, the
tion of the tip can be described by keeping only the ter
proportional toA1 andĀ1 in Eq. ~116! that is a three-radius
epicycle~or epiepicycle!

X1 iY5r0eiu1r1ei (12V)u2 iu12r2ei (11V)u1 iu1

~V.1/2!, ~117!

whereu1 is an arbitrary phase,r1;Am, and

r2 /r15~12V!/~11V!. ~118!

The fact thatr2 /r1 vanishes asV→1 may provide an ex-
planation for why the meander trajectories in simulations
reaction-diffusion models of excitable media have been
ditionally well fitted by a simple epicycle@Eq. ~117! with
r250#. In Ref. @15#, it was argued that meander trajectori
should generally be epiepicycles close to the onset of in
bility. It was left unexplained, however, why the ratior2 /r1
turns out to be very small. For the simulation of the FN
Ref. @15#, V'0.782, in which case Eq.~118! predicts that
r2 /r1'0.12. This ratio is roughly consistent with the rat
of the amplitudes of the peaks of 11V and 12V in the
power spectrum ofX(t) in Fig. 4 of @15#. Here, Fig. 11
illustrates that two-radius and three-radius epicycle trajec

FIG. 11. Comparison of large core meander trajectories obta
~a! by plotting a two-radius epicycle~solid line! with V50.735 and
r1 /r051/5 and the predicted three-radius epicycle~dashed line!
with V50.735,r1 /r051/5, andr2 /r15(12V)/(11V), and~b!
by simulation of the FN model withe50.18 andd521.4. The
value ofV and the ratior1 /r0 used as input in~a! were extracted
from the simulation in~b!. The total time in~a! and ~b! is about
3T0.
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PRE 60 5091THEORY OF SPIRAL WAVE DYNAMICS IN WEAKLY . . .
ries are very close even whenV departs significantly from
unity. Such a small difference is probably hard to reso
experimentally.

Let us now examine the meander trajectory predicted
Eq. ~116! in the asymptotic limit whereV51/2, which is
more difficult to reach in simulation and experiment. T
main difference in this case is thatA2 is O(1) because the
bifurcation is resonant, i.e.,A1

2ei2Vu act as a periodic drive o
the wave tip at the primary frequencyV51. Inserting the
results of the weakly nonlinear analysis, Eqs.~107!–~112!,
into Eq. ~116!, we obtain that

X1 iY5r0eiu1r1eiu/22 iu12r2ei3u/21 iu1

1r3eiV* u1 i (22u11tan213p/8) ~V51/2!,

~119!

where we have definedV* [122V52c2m, u1 is an arbi-
trary phase, and

r153Ac1m, r25r1/3, r353A11~3p/8!2/~32G!.

~120!

Consequently, the effect of the resonance whenV51/2 is to
add a slow component of motion with frequencyV* ;m
around a circle of radiusr3 of O(1). Steady-state rotation i
approached smoothly whenm→0, even thoughr3 remains
finite, becauseV* vanishes in this limit. Finally, we note
that r3 diverges as 1/G in the limit G→0. The tangential
velocity of the tip around the circle of radiusr3, however,
scales asV* r3;G and vanishes in this limit, which is there
fore well behaved.

2. Numerical integration of the wave tip equation

Equation~85! was integrated numerically using the alg
rithm described in Appendix A. We used both the functionF
plotted in Fig. 8, and the simple analytical form

F~x!5tanh~x2a!1tanh~a!. ~121!

This form has qualitatively the same shape as the calcul
function F, which is plotted for differentl D in Fig. 8, and
yields a qualitatively similar nonlinear behavior. For this re
son, all the results presented here are for this simplified fo
of F defined by Eq.~121! for the choice of parametera
50.2. As noted earlier, the calculated functionF is nonana-
lytic at the origin in the singly diffusive sharp bounda
model and behaves as20.576q ln(uqu). When this is used in
Eq. ~85! for the tip motion, as noted previously, a stea
rotation is unstable for allm @Eq. ~87!# however small since
the slope ofF at the origin diverges. The growth of th
modulation as one moves away from threshold is, howe
much slower than in the analytic case, the amplitude of
modulation being of order exp(2cst/m). It is interesting to
note that requiring this amplitude to be larger than the in
face widthe, as a criterion for meander threshold in a re
small-e model, givesm;cst/u ln(e)u quite similarly to what
was obtained previously by cutting off the slope ofF at the
scale of the interface width. Away from onset, however, t
nonanalyticity does not modify the nonlinear behavior mu
For this reason, we shall not treat this case separately.
e

y

ed
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e
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The results of the numerical integration of Eq.~85! are
illustrated in Figs. 12 and 13. We have found it convenien
plot q(u)2q(u22p), instead ofq(u) because the latte
quantity contains a component;eiu that only yields a trans-
lation of the center of rotation. We have checked that
amplitude of oscillation and the frequency shift ofV from
1/2 increase quantitatively for smallm as predicted by the
weakly nonlinear analysis. Figure 13 shows that the osci
tions become more nonlinear with increasing distance fr
the bifurcation point, but remain periodic with a frequen
close to 1/2. The fact that the frequency is rather insensi
to m can be understood by remarking thatF @calculated or
approximated by Eq.~121! with a small# is close to being an
odd function of its argument. ForF exactly odd @G
5mF9(0)50#, the weakly nonlinear analysis of the prece
ing section predicts thatAn50 for all n even and that there is
no nonlinear frequency shift, i.e.,V51/2 for any value of
m.0. One would therefore naturally expect to find thatV
remains close to 1/2, even far from onset, whenF deviates
slightly from an odd function.

Finally, it is worth noting that hypermeander~i.e., chaotic
meander! is not contained in the large core limit. This
consistent with the fact that hypermeander has been obse
numerically in the opposite parameter range of high ex
ability @12#. In this range, the shape of the spiral boundary
not constant in time on the scale ofRtip . It therefore seems
likely that the dynamics on this scale plays an important r
in hypermeander.

VII. SPIRAL MOTION UNDER EXTERNAL ACTION

Motion of spiral waves can be induced by modulating t
medium excitability in space or time or by adding an ext
nal field. It is not difficult to extend the approach of Sec. V
describe these effects simply and quantitatively in the la
core limit.

FIG. 12. Plot ofq(u)2q(u22p) vs u/2p obtained by numeri-
cal integration of the wave tip equation withF defined by Eq.~121!
anda50.2; ~a! m50.42, and~b! m50.6. The onset of meander fo
this functionF corresponds tomc50.3902.

FIG. 13. Plot showing saturated oscillations ofq(u)2q(u
22p) vs u/2p for different m.
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5092 PRE 60VINCENT HAKIM AND ALAIN KARMA
A. Variation of the medium excitability

We consider first the effect of spatial and temporal mo
lations of the excitability~obtained by changingD and/ore
into space and/or time!. Such a modulation will generally
produce a variation of both the planar front velocityc0 and a
variationdB(z,t) of the parameterB characterizing the me
dium. We assume that this variation is small enough to
treated as a perturbation, thatdB(z,t) varies slowly in time
~i.e., on the scale of the spiral rotation period! and in space
~i.e., on the scale of the spiral core!, and thatB is close
enough toBc ~i.e., ]R) so that the spiral self-interaction ca
be neglected. The radius of curvature of the tip traject
will then depart from its unperturbed valueR0 , Ri5R0
1dRi with

dRi

R0
5

3

2

dB

Bc2B
~122!

and the variation ofc0 gives a subdominant contribution fo
B close toBc . Substituting the above expression into E
~69!, we obtain at once

q̈1v1
2q5

3

2

c0R0

e

v1
2dB~z,t !

Bc2B
. ~123!

Integration of Eq.~123! gives the spiral tip motion result
ing from a given space time variation of excitability. As
simple illustration, we show that a global periodic variati
of excitability at the spiral frequency induces a spiral dr
@19#. When dB5A cos(v1t1f), the right-hand side of Eq
~123! is resonant with the natural oscillation modes of t
left-hand side, the translation modes, and induces t
growth,

q~ t !5
3

4

c0R0

e

v1t

Bc2B
A sin~v1t1f!. ~124!

A simple way to understand the motion described by E
~124! is to remember that for a steady spiral centered clos
the origin ~compared to the radius of its core!, at z05x0
1 iy0, the distance of the wave tip to the origin varies pe
odically as

uR0exp~ iv1t !1z0u.R01x0cos~v1t !1y0sin~v1t !.
~125!

Comparing the two expressions shows that Eq.~124! de-
scribes a linear drift of the spiral,

z05
3

4

c0R0

e

A

Bc2B
v1t@2 i exp~2 if!#. ~126!

The drift direction depends on the relative phase between
spiral rotation and the periodic modulation of excitabilit
the spiral drifts perpendicularly to the direction@exp(2if)#
of the spiral tip at the maximum excitability viewed from th
spiral center. One can note that our derivation of Eq.~126! is
simple, but, of course, it breaks down when the spiral cen
is no longer close to the origin and the linearization givi
Eq. ~69! and thus Eq.~123! becomes illegitimate. The rem
edy is standard: a nicer looking derivation is obtained
introducing at the very start of the derivation of Eq.~69! the
-

e

y

.

ir

.
to

-

he

er

y

spiral centerz0 and parametrizing the wave tip asz5z0
1@R01eq(t)/c0#eiv1t1c(t). The slow variation ofz0 with
time is obtained by requiring that it cancels the secular te
on the right-hand side of Eq.~123!.

A time-independent excitability which varies slowly i
space is another simple case. The parameterB(z) in Eq.
~123! should be evaluated at the spiral tip position. As t
spiral tip turns around the spiral core,B varies harmonically
in time at the spiral rotation period and the spiral drif
Since the direction of maximum excitability viewed from th
spiral center is along the gradient ofB, one concludes tha
the spiral drifts perpendicularly to the gradient ofB, along an
isoexcitability line.

B. Drift in an external field and filament tension

It has been reported in previous experimental@20,21,23#
and theoretical studies@24,25# that a spiral drifts when it is
submitted to a constant external field. Interestingly, the sp
was found to drift at a nonzero angle with the applied ext
nal field. In the presence of an external fieldE which couples
to the activatoru, the activator reaction-diffusion~3! be-
comes

] tu5e¹2u1 f ~u,v !/e2E•“u. ~127!

A simple way to determine the effect ofE is to view the
wave dynamics in a frameM which moves at velocityE. In
such a frame, the supplementary gradient term in Eq.~127!
disappears andu simply obeys the fieldless Eq.~3!. How-
ever, the controller equation is modified. It reads, in the
cited region,

] tv51/te1E•“v. ~128!

The gradient term in Eq.~128! modifies the relation betwee
the tangential tip velocity and the medium parameters.
shown below, one obtains instead of Eq.~37!

ct5c01c0

B2Bc

K
1g iEi1g'E' , ~129!

whereEi and E' are the external field component, respe
tively, parallel and orthogonal to the tangential tip veloc
~measured in the frameM ). Our sign convention is thatE'

.0 when it points toward the excited region of the spiral t
The numerical coefficientsg i andg' are determined below
from a solvability condition, as we have now done seve
times. Before detailing this computation, we show that
spiral drift is a simple consequence of Eq.~129!. As above,
the wave tip motion is determined by Eqs.~63!, ~64! where
now z5x1 iy denotes the position of the wave tip in th
frame M and ct is given by Eq.~129! and depends on the
angle between the instantaneous velocity~in the frameM )
and the external fieldE. The form of the functionRi@ct# is a
consequence of the front interface dynamics determined
Eq. ~3! which applies in the frameM. Therefore, it still has
the large core asymptotic form~66!. Writing ct5ct

01dcE in
Eq. ~129! as a constant partct

0 independent of the externa
field and a small external field-dependent partdcE5g iEi
1g'E' , we can again copy the analysis of Sec. V A a
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simply replacedcq by dcE . For a perturbed wave tip circle
motion z5@R01eq(t)/c0#eiv1t1c(t), this gives instead of
Eq. ~69!

q̈1v1
2q5v1

2dcE

c0Ri8@ct
0#

e
5v1

2 3

2

c0R0

e

dcE

c02ct
0

.

~130!

For definiteness, we suppose that the fieldE is parallel to the
x axis which gives, to lowest order in the perturbation,Ei
52E sin(v1t) and E'5E cos(v1t). So, Eq.~130! is again
found to be the equation of a harmonic oscillator forced at
natural frequency and the amplitudeq of the oscillation di-
verges in time,

e

c0R0
q~ t !5

3

4

E

c02ct
v1t@g icos~v1t !1g'sin~v1t !#.

~131!

Comparing Eq.~131! with the expression ofq for a trans-
lated spiral~125!, one concludes that Eq.~131! describes a
spiral drifting away from the origin at constant velocity wi

x05
3

4

E

c02ct
g iR0v1t,

y05
3

4

E

c02ct
g'R0v1t. ~132!

The spiral drift angleuD with the external field is therefore

tan~uD!5g' /g i . ~133!

Several remarks can be made:
~i! Formally, uD is the angle between the drift velocit

and the external field in theM frame. However, the drift
velocity in the large core limit is dominantly produced by t
time-dependent variation of the spiral radius and is mu
larger than the velocity difference between the laborat
frame and theM frame. Terms of the same order as t
velocity difference between the two frames have been
glected in obtaining Eq.~131!. It therefore makes no sense
correctuD for this velocity difference.

~ii ! A constant field produces a spiral drift because
right-hand side of the components of the external field in
tip frame,Ei52E sin(v1t) andE'5E cos(v1t), oscillate at
the resonant frequencyv1. A sinusoidal external field oscil
lating atve has components in the tip frame atve1v1 and
ve2v1. A spiral drift is therefore induced by an extern
field when it oscillates attwice the spiral frequency (ve
52v1), as noted in previous studies@22#.

~iii ! As stated previously, the derivation of Eq.~132!
breaks down when the spiral center is no longer close to
origin and the linearization giving Eq.~131! becomes illegiti-
mate. This can be cured as stated above, by introducing f
the start the spiral center the motion of which is determin
through the requirement that no secular terms appear on
right-hand side of Eq.~130!.

It remains to obtain Eq.~129! and compute the paramete
g i and g' . We consider the spiral~in the M frame! in a
Cartesian coordinate system attached to the wave tip a
s

h
y

e-

e
e

e
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Fig. 3. As before, the front interfaceyf(x) simply obeys Eq.
~18! in the tip region. However, the controller concentrati
on the back interface is changed by the external field@Eq.
~128!# and this modifies the back equation~19!.

We begin by computing the controller concentration
the back interface. The time dependence of the field com
nents can be neglected since it is on the scale of the rota
period,R0 /c0, which is much longer in the large core lim
than the time scale of interest, the spiral width traversal ti
e/c0

2. Equation~128! thus shows that in the excited regionv
obeys

v~ t,x2E't,y2Eit !5v~0,x,y!1t/te . ~134!

The concentrationvb(x) on the back interface at the poin
„x,yb(x)… is related to the controller concentrationv0 on the
front interface at the point„xf ,yf(xf)1ctt(x)… at a previous
time t(x) with

xf5x2E't~x!,

yf~xf !1ctt~x!5yb~x!2Ei . ~135!

xf and t(x) are functions ofx, the considered point of the
back interface which can be determined perturbatively
small external field. Writingxf5x1dx,t(x)5t0(x)1dt(x),
one obtainst0(x)5@yb(x)2yf(x)#/ct ,dx52E't0(x), and
dt(x)5t0(x)(2Ei1E'dyf /dxux)/ct . Therefore the con-
troller concentration at abscissax on the back interface is
equal to

vb~x!5v02t~x!/te

5v01
yf~x!2yb~x!

ctte

3F11S 2Ei /ct1E' /ct

dyf

dx U
x
D G . ~136!

The last term is the modification ofv on the back interface
coming from the external field.

When Eq.~136! is taken into account, the back equatio
in the tip region reads~using as before space variables sca
by e/c0)

d2yb

dx2
5@•••#old2B

c0

ct
@yf~x!2yb~x!#

3F2Ei /ct1E' /ct

dyf

dx U
x
G F11S dyb

dx D 2G3/2

,

~137!

where @•••#old denotes the terms on the right-hand side
Eq. ~22!. When the front and back equations are lineariz
around the critical finger asyf(x)5Yf(x)1dyf(x),yb(x)
5Yb(x)1dyb(x) one obtains as beforedyf(x)5h1dct /c0
@Eqs.~25! and ~32!# and a modified equation fordyb(x),
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Lb~dyb!5@•••#old2Bc@Yf~x!2Yb~x!#

3F2Ei /c01E' /c0

dYf

dx U
x
G F11S dYb

dx D 2G3/2

.

~138!

Integrating both sides of Eq.~138!, one obtains the solv
ability condition which replaces Eq.~35!,

dct

c0
@ I 11Bc~2I 21I 3!#2dBI35Bc~2Ei /c0I 31E' /c0I'!,

~139!

where the constantsI 1 ,I 2 ,I 3 have previously been define
@Eq. ~36!# and the new constantI' is given by the integral

I'5E
0

1`

dxj~x!@Yf~x!2Yb~x!#
dYf

dx F11S dYb

dx D 2G3/2

.8.431. ~140!

Equation~139! shows that Eq.~129! holds with the fol-
lowing expressions forg i andg' :

g i52
Bc

K
.20.850,

~141!

g'5
BcI'

KI 3
.0.929.

Changes of spiral core radius are the dominant effect in
large core limit and lead to a drift opposite to the field (g i
,0) as qualitatively argued in@25#. We quantitatively find
here that a counterclockwise rotating spiral drifts at an an
of about 132.5° with the field direction in good agreeme
with previous simulations@25# as well as our own, as show
in Fig. 14 ~the sign ofg' and of the drift angle would be
opposite for a clockwise rotating spiral!.

FIG. 14. Simulation of the FN model of Fig. 1 (e50.185,d5
21.41) with an external field added as in Eq.~127! with E51.0
31023. The wave tip trajectory is shown~bold line! as well as
surface plots ofu showing the spiral position at the end of th
simulation. The spiral is found to drift at about 135° with the fie
in good agreement with the present asymptotic prediction of 132
e

le
t

Finally, we note that the curvature-induced motion of
weakly curved three-dimensional~3D! scroll wave @46,37#
filament is directly related to spiral drift in an electric field
For a 3D filament„x0(s),y0(s),z0(s)…, we can choose a co
ordinate system with its third axis aligned with the filame
tangent ats. Locally, the activator field can be writtenu„x
2x0(s),y2y0(s);t… with u(x,y;t) a two-dimensional spira
wave. The two-dimensional Laplacian in Eq.~3! acting on
such a solution gives ¹2D

2 u2(x9]x1y9]y)u5¹2D
2 u

2kN•“u wherek is the filament curvature andN the fila-
ment normal withkN directed toward the filament center o
curvature. Therefore,ekN acts as an external fieldE in the
normal (x,y) plane. Sinceg i,0 and a spiral drifts opposite
to the field direction, one concludes that a scroll ring gro
and that curvature is destabilizing in the large core lim
~negative line tension!. Moreover, a scroll ring propagate
normally to the plane of the ring at a velocity proportional
its expansion velocity sinceg'Þ0. The other laws govern
ing filament motion can similarly be deduced by reducing
3D dynamics to an effective 2D process. We defer, howev
a detailed study of 3D dynamics in the large core limit to
future publication.

VIII. MULTIARMED SPIRALS

In this section we extend our analysis to the situat
where several thin excited regions or ‘‘spiral arms’’ rota
around a common core. Our main finding is that such mu
armed spiral waves are always linearly unstable in the la
core limit. We confirm this finding by numerical simulatio
of the FitzHugh-Nagumo model for two-arm and three-a
spirals. A different conclusion has been reached in Ref.@26#
where multiarmed spiral waves were found by numeri
simulation of the FN model, with a well-prepared initial co
dition, to be stable over windows of parameters in the la
core limit. We shall comment at the end of this section on
possible origin of this disagreement.

Let us denote byqj (u) the coordinate of the tip of thej th
spiral arm. We make the arbitrary choice that rotation
counterclockwise and take the indexj P@0,N21# to increase
clockwise. The equation for the phases,c j5u j2v1t, is
given by

dc j /dt52~e/c0R0!v1qj ~ j 50, . . . ,N21!.
~142!

For simplicity, we consider an initial condition where th
angular positions of theN spiral arms are uniformly distrib-
uted. To lowest order ine/(c0R0), one can assume that th
spiral arms rotate at constant angular velocity and that
phase difference between two successive arms remains
stant:c j2c j 2152p/N. The equation that governs the mo
tion of a given arm, say armj, is essentially the same as th
one governing the motion of a one-arm spiral, except t
this arm interacts with the exponential recovery tail of t
controller fieldv of arm j 21, instead of its own recovery
tail. Consequently, the equation of motion for armj is simply
obtained by replacing the interaction termmF„q(u)2q(u
22p)… on the right-hand side of Eq.~85! by mNF„qj (u)
2qj 21(u22p/N)…, with mN defined in terms of the reduce

°.



on

th

es

e
en
p

g

al

y
an-

e
(

ly

is
, let
udy
-
g to

ary
-
ta-

lly
o

h a
plex

at
a

to
y

op

nu-
e
of

PRE 60 5095THEORY OF SPIRAL WAVE DYNAMICS IN WEAKLY . . .
period 2pR0 /N. For a spiral withN arms, the wave tips are
governed by theN coupled equations

d2qj

du2
1qj5mNF„qj~u!2qj 21~u22p/N!…

~ j 50, . . . ,N21!, ~143!

where

mN5
3Bc~bK!3/2

2~Bc2B!5/2
expF2

2pe

c0
2NtR

S bK

Bc2BD 3/2G ~144!

andF is the same function as for a one-arm spiral.

A. Linear stability

Let us first analyze the linear stability of anN-arm spiral.
Linearizing Eqs.~143!, we obtain

d2qj

du2
1qj5a@qj~u!2qj 21~u22p/N!#

~ j 50, . . . ,N21!, ~145!

where we have defineda[mNF8(0). Thesymmetry of the
above system of linear equations implies that its soluti
must be of the discrete Floquet-Bloch form

qj5q̂ exp~ iknj 1Vnu!, ~146!

wherekn is the discrete Bloch wave vector that takes on
values

kn5
2pn

N
~n50, . . . ,N21!. ~147!

Substituting the above form into Eq.~145!, we obtain the
eigenvalue equation

Vn
2115aF12expS 2

2p

N
~Vn1 in ! D G ~n50, . . . ,N21!

~148!

that determines the allowed values ofVn for each moden
and hence its stability. The two global translational mod
which are exact solutions of Eq.~148! for arbitrary a, cor-
respond toV152 i and VN215 i . We restrict ourselves to
considering the 2N22 other modes which correspond to th
coupled translations of the individual spiral arms. The eig
values corresponding to these modes can be calculated
turbatively by expandingVn in a power series ina about
6 i . For brevity of notation, let us denote byVn

1 the N21
eigenvalues obtained by expanding aboutV151 i for n
50,2, . . . ,N21, and byVn

2 the ones obtained by expandin
about VN2152 i for n50,1, . . . ,N22. Substituting the
power series expansions

Vn56 i 1aVn(1)
6 1a2Vn(2)

6 1••• ~149!

into Eq. ~148! we obtain after simple algebraic steps
s

e

,

-
er-

Vn(1)
6 56

1

2
sinS 2p~n61!

N D7 i sin2S p~n61!

N D .

~150!

Since the leading term in the expansion~149! is purely
imaginary, the stability is determined by the sign of the re
part ofVn(1) . Equation~150! implies that Re(Vn(1)

2 ).0 for
n50 or n.N/211, and Re(Vn(1)

1 ).0 for n,N/221, and
therefore thatN-arm spirals are always unstable forN.2.
For the special caseN52 andn50, Eq. ~150! implies that
Re(Vn(1)

1 )50, in which case the stability is determined b
the sign of the real part of the next order term in the exp
sion, Re(Vn(2)

6 ). The calculation at ordera2 yields that
V0(2)

6 5p/27 i /2 and therefore that Re(V0(2)
6 )5p/2.0.

Thus the symmetric (n50) mode is always linearly unstabl
for a two-arm spiral. In contrast, for the antisymmetricn
51) mode,V156 i remains the solution for arbitrarya.
We conclude thatN-arm spiral waves are always linear
unstable forN.1 in the large core limit.

The nature of the linearly unstable tip trajectories
simple to deduce from the above results. To be concrete
us consider two-arm and three-arm spirals that we shall st
in simulations below. ForN52, aside from the two transla
tional modes, there are two unstable modes correspondin
the complex conjugate pair,

V0
65pa2/26 i ~12a2a2/2! ~N52!. ~151!

Since this pair corresponds ton50, the two tips will move
symmetrically ~with equal radial displacements! about a
fixed center of rotation. Furthermore, since the imagin
part ofV0

6 is slightly less than unity, the two tips will oscil
late in and out of the unperturbed steady-state circle of ro
tion with a period slightly larger than the basic periodT0,
and with an amplitude of oscillation that grows exponentia
in time. ForN53, there are four modes aside from the tw
global translational modes: a complex conjugate pair wit
negative real part, which is stable, and the unstable com
conjugate pair

V0
65A3a/46 i ~123a/4! ~N53! ~152!

obtained by evaluating Eq.~150! for N53, where the tips
move with equal radial displacements. As forN52, the fi-
nite imaginary part slightly smaller than unity implies th
the tips will exhibit exponentially growing oscillations with
period slightly larger thanT0.

In addition,a is typically much smaller than unity in the
large core limit since the spiral period is large compared
the recovery time,tR!T0 /N, and the spiral arms are onl
weakly coupled via the controller fieldv. Therefore, the in-
stability of a multiarmed spiral should generically devel
on a time scale much longer thanT0, especially forN52
since the real part ofV0

6 scales asa2, instead of asa for
N.2.

B. Numerical simulations

In order to test the above predictions, we investigate
merically the stability of spiral waves with two and thre
arms in the FN model. We restrict ourselves to a range
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5096 PRE 60VINCENT HAKIM AND ALAIN KARMA
parameters where a one-arm spiral is linearly stable and
tates rigidly. We construct an initial condition for anN-arm
spiral, denoted by (uN ,vN), by simply rotatingN21 times
by 2p/N a one-arm spiral wave, which yields the expre
sions

uN~r ,u!5 (
j 50

N21

u~r ,u22p j /N!2~N21!u0 , ~153!

vN~r ,u!5 (
j 50

N21

v~r ,u22p j /N!2~N21!v0 , ~154!

where (u0 ,v0) are as before the resting values ofu and v.
Since the simulations are performed in Cartesian coo
nates, and the edges have a negligible effect, each rotatio
2p/N is simply carried out by running the simulation of
one arm spiral for a time equal toT0 /N. The initial condition
defined by Eqs.~153! and ~154! deviates from the true
steady-state solution of anN-arm spiral by an amount pro
portional to v2v0 on the wave fronts, which is exponen
tially small in the large core limit. Therefore, this initial con
dition can be considered as a slightly perturbedN-arm spiral
solution and is ideal for the present purposes.

Results of the simulations are shown in Fig. 15 where

FIG. 15. Plots of the radial displacement of the wave tips
time for two-arm@~a! and~b!# and three-arm~c! spirals. The highly
nonlinear symmetric meander dynamics of three-arm spirals@Fig.
17~b!# is destabilized at large enough time leading to the elimi
tion of one arm at boundaries. In contrast, the symmetric mea
dynamics of two-arm spirals is stable on the time scale of our si
lations despite the collisions illustrated in Fig. 18.
o-

-

i-
of

e

plot the normalized radial displacement of the wave ti
@r j (t)2R0#/R0, which corresponds toeqj /c0 in our analy-
sis. We calculated the position of theN wave tips by looking
for the points of zero normal velocity along the spiral boun
ary defined byu50. This is equivalent to looking for theN
intersections of the curvesu50 and] tu50. We measured
r j (t) from the instantaneous center defined byx̄(t)
5( j 51

N xj (t)/N and ȳ(t)5( j 51
N yj (t)/N. All the main quali-

tative features predicted by our analysis are observed in
simulations.~We have not attempted a detailed quantitat
comparison because our predictions are strictly valid outs
the range of our simulations.! First, during the initial insta-
bility, the center of rotation„x̄(t),ȳ(t)… remains fixed in time
and the radial displacements are equal for all tips. This
plies that the symmetricn50 is the most unstable one. Se
ondly, the radial displacements exhibit exponentially amp
fied oscillations, with the amplification rate dependin
sensitively on the steady-state periodT0 and the number of
arms, which both determine the parameter,a5F8(0)mN ,
entering in the predicted amplification rates@i.e., the real
parts ofV0

6 in Eqs. ~151! and 152!#. In particular, Fig. 15
shows that the amplification is much slower in~b! than ~a!,
which agrees with the fact thatT0 is about 1.46 times large
in ~b! than ~a!. In addition, for the same parameters, t
three-arm spiral in~c! is destabilized much faster than th
two-arm spiral in~b!, in agreement with the fact thatmN
defined by Eq.~144! is larger forN53 thanN52. Lastly,

FIG. 17. Simulations of the FN model showing the wave
trajectories during the initial development of the instability of mu
tiarm spirals for ~a! a two-arm spiral withe50.445 andd5
21.24, and~b! a three-arm spiral withe50.445 andd521.25.
Each line type~solid, dashed, or long-dashed! corresponds to a
different wave tip trajectory.
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-
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-

FIG. 16. Plot ofq(u) vs u/2p obtained by numerical integration of the wave tip equation withF defined by Eq.~121! anda50.2; ~a!
two-arm spiral form50.2, and~b! three-arm spiral form50.1.
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the period of the radial oscillation is slightly larger thanT0

as predicted by our analysis. This can be seen, for exam
in Fig. 15~b! where the radial displacement of the tips exh
its 48 peaks over a time lapse of 50T0.

One interesting question is whether the instability of t
symmetric mode saturates in a nonlinear regime. To exp
this question, we have integrated Eq.~143! numerically for
the symmetric mode by lettingq1(t)5q2(t)5•••qN(t)
[q(t), in which case Eq.~143! reduces to a single equatio
for q(t). We investigated different values ofN andm for the
functionF defined by Eq.~121! with a50.2. The results are
shown in Fig. 16 forN52 andN53, the plots for higherN
being qualitatively identical to the plot forN53. These plots
show that the bifurcation is subcritical. For allN>2, the
amplitude of oscillation increases linearly in time in the no
linear regime. This comes about because in the forced
monic oscillator equation forq the amplitude of the resonan
forcing termF saturates whenq becomes of order one. Fo
smallmN , averaging the forcing term over one period of t
harmonic motion gives the mean energy increase of the
cillator and accounts for the phenomenon. Interestingly,
cross over from the linear to the nonlinear regime is qual
tively different for N52 andN.2. For N.2, the slope of
the envelope of the oscillations increases monotonousl
time until it reaches a constant value in the nonlinear regi
whereas forN52, the slope of the envelope increases no
monotonously with time. The FN simulation forN52 shows
qualitatively the same nonmonotonous increase of the e
lope of radial oscillations with time as obtained by integr
ing the wave tip equation, as can be seen by comparing
15~b! and Fig. 16~a!. This shows that even relatively fin

FIG. 18. Sequence of surface plots ofu and superimposed wav
tip trajectories~thick solid lines! illustrating the highly nonlinear
collision of wave fronts occurring during a symmetric meander p
tern of a two-arm spiral. Simulation parameters ared521.24 and
e50.445. Frames~b!, ~c!, and ~d! are att/e520, 25, and 40, re-
spectively, witht measured from frame~a!. Note that an exchange
of wave tips and spiral arms occurs during the collision in~c!, such
that the wave tip of the downward moving arm in~b! is at the end
of the upward moving arm in~d! and vice versa. This exchang
produces the sharp pivot turns around the small inward mea
petals.
le,
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details of the nonlinear instability of multiarmed spir
waves are captured by our analysis. In Fig. 15~a!, the oscil-
lations grow too rapidly to their saturated values to obse
this crossover.

One important consequence of the absence of a we
nonlinear saturation of the unstable symmetric mode is
the distance of closest approach between the wave
~which occurs at the minimum of each oscillation! decreases
with time. The resulting highly nonlinear regime is obvious
not described by the wave tip equation~143!, which is only
valid for small radial displacements of the wave tip com
pared toR0. Results of the FN simulations show the com
plexity of the dynamics in this regime, as illustrated by Fig
17 and 18.

To conclude, let us contrast our results to those of R
@26# where the stability of multiarm spiral waves was studi
in a slightly different version of FN kinetics, but in a simila
regime of weak excitability. When starting from sufficient
well-prepared initial conditions, multiarmed spiral wav
were found to be stable when the periodT0 was large enough
to accommodate a finite number of arms around a sin
core. Moreover, it was observed that a spiral withN arms
became unstable and decayed into a spiral withN21 arms
when a transition line was crossed by decreasingT0 in the
plane ofT0 and the refractory period~defined as the mini-
mum interval between waves in response to the low
stimulus exciting the medium!, with a separate line for eac
N. The main difference in our predictions is that stead
rotating multiarmed spiral waves are always linearly unsta
for N>2 for any parameters in this plane. Note, howev
that steadily rotating multiarmed spirals were not observed
@26# when starting from randomly broken arms.

We have actually checked that the instability predicted
our analysis, and observed in our FN simulations, also occ
in the FN kinetics studied in@26#. This is illustrated in Fig.
19 for a two-arm spiral andkg55.2, other parameters bein
chosen the same as in Ref.@26#. The main difficulty in ob-
serving this instability is that it develops extremely slow
when the spiral period is much larger than the refract
period, in which casemN defined by Eq.~144! becomes ex-
ponentially small, and the time to observe the instability e
ponentially large, as a function of the ratio of the two pe
ods. For example, for the parameter of Fig. 19, t
destabilization of the two-arm spiral already occurs ove

t-

er

FIG. 19. Plot of the radial displacement of one of the spiral t
vs time showing the instability of a two-arm spiral wave in the F
kinetics studied in Ref.@26#. The kinetics is defined by the equa
tions ] tg5D“g2krg(g2a)(g21)2krg and ] tr 5(g2r )/t. We
usedkg55.2 and the other parameters as defined in Ref.@26#: D
51, kr51.5, a50.05, andt55.
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time scale of about ten rotations. For the valuekg55 re-
ported in Fig. 3 of@26#, T0 is about twice larger than fo
kg55.2. Hence, the instability cannot be seen on a time s
of a few rotations.

IX. TOWARD SMALLER CORE RADII: A DISCUSSION

We have seen in Sec. VI that the large core equation
motion ~85! lead to a meander onset frequencyv2 which is
equal to half the basic spiral frequency, quite independe
of the detailed form of the functionF. It is interesting to
identify the main subdominant effects which leadsv2 /v1 to
depart from 1/2 for smaller core radius~as shown in Fig. 9!.
The following two assertions underlie the large core resu

~i! The tangential velocity and spiral tip rotation rate on
depend on the instantaneous characteristics of the mediu
which the spiral tip propagates~i.e., the relaxation of the tip
velocity and rotation rate can be taken to be instantaneo!.

~ii ! The angular tip position is slaved to time (u5v1t),
i.e., the time interval between two successive passages o
spiral tip by the same angular positionu can be taken to be
2p/v1 and one can neglect the dependence of this time
terval on the spiral path.

A systematic discussion of corrections to the large c
limit is beyond the scope of this article. We content ou
selves here in showing that corrections to~i! and ~ii ! both
affect the value ofv2 /v1 at onset. As discussed below, ta
ing into account the noninstantaneous relaxation@i.e., correc-
tions to~i!# formally appears to give the dominant correcti
to the large core limit results. However, corrections to~ii !,
although subdominant, seem the most important for the
rameter range of Fig. 9 and account semiquantitatively
the numerical results.

We begin by discussing~i!. The motion of the spiral tip is
determined from the two relations~63!, ~64!. The tangential
tip velocity is determined by the dynamics of the close
region ;e/R0, which is fast and independent of the spir
core size. The determination of the radius of curvature of
spiral tip trajectory involves, however, the dynamics of
whole intermediate region;(R0Rtip

2 )1/3 and, as discussed i
Appendix B, this happens on a time scaletd with v1td /
;(Rtip /R0)1/3. So one expects that this instantaneous rad
of curvature, which we denote here byR̃i to distinguish it
from the steady-state valueRi , adapts on a time scaletd to
changes in medium conditions. Short of solving Eq.~B2!, a
crude model of this effect is obtained by replacing the inst
taneous Eq.~64! by

td

dR̃i

dt
1R̃i5Ri@ct~$v%!#. ~155!

This gives instead of Eq.~70! the couple of equations

d2q

du2
1q5dR̃ic0 /e, ~156!

v1td

d~dR̃i !

du
1dR̃i5dRi , ~157!
le

of

ly

.

in

s

the

-

e
-

a-
r

l
e

s

-

wheredRi is given by Eqs.~71!, ~84!, as previously. At the
linear level, Eq.~157! simply becomes

v1td

d~dR̃i !

du
1dR̃i5a

e

c0
@q~u!2q~u22p!#. ~158!

Searching for the eigenmodes of Eqs.~156!, ~158! under the
form q5A exp(su) gives the modified eigenvalue equation

~s211!~11sv1td!5a@12exp~22ps!#. ~159!

The meander threshold is determined by requiring that
~159! has purely imaginary rootss5 iV besides the two
translation modess56 i . Perturbation around the large co
(td50) result gives the modification to the meander fr
quency at onset,

V5
1

2
2

v1td

2p
. ~160!

So relaxation effects lower the frequency ratiov2 /v1 below
1/2 and cannot account for the numerical observations
ported in Fig. 9.

In contrast, we show that improving on~ii ! leads to cor-
rections in agreement with the numerical data. We para
etrize the spiral tip position as in Sec. V A asz5(R0
1eq/c0)exp$i@v1t1c(t)#%. The angular tip position is

u5v1t1c~ t !. ~161!

Beyond leading order,c(t) is not negligible in Eq.~161! and
the spiral period of rotationT depends on the spiral tip path
Equation~67! gives ċ52v1q/R0 to dominant order@near
the meander onset the other term in Eq.~67! is of higher
order,dcq /c0;(e/c0R0)5/3 using Eqs.~70!, ~71! and it can
be neglected#. This implies that it actually takes a timeT
5T01DT longer ~shorter! than the periodT0 of the steady
spiral to return to the sameu for outward~inward! displace-
ments

DT5T0

e

c0R0
E

u22p

u df

2p
q~f!. ~162!

This reduces~increases! the interaction with the previous tip
by ;DT/tRexp(2T0 /tR) and causes the spiral tip to retur
sooner inside~outside! the core. This leadsv2 /v1 to move
away from 1/2 toward unity. In order to explicitly show thi
we compute the variation of the tip trajectory radius of ro
tion dRi due to the spiral displacement taking Eq.~162! into
account. Comparing Eqs.~83! and ~162! gives

dR

R0
5

3Bc

2bK S R0c0

e D 2/3

exp~2T0 /tR!

3H F„q~u!2q~u22p!…2
DT

tR

2K1JBc

Bc
J .

~163!

A modified version of Eq.~85! is obtained by substituting
Eq. ~163! in Eq. ~69!,
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q̈1v1
2q5mv1

2H F@q~u!2q~u22p!#2
DT

tR

2K1JBc

Bc
J ,

~164!

where the constantm is given by Eq.~87! andDT depends
on the tip trajectory@Eq. ~162!#. The linear version of Eq
~164! is ~where we can replace time by angular position!

d2q

du2
1q5a@q~u!2q~u22p!#2bE

u22p

u df

2p
q~f!,

~165!

where a5mF8(0) as before and b5m(T0 /tR)(e/
c0R0)(2K1JBc)/Bc . The eigenmodes of Eq.~165! are of
the formq(u)5A exp(su) wheres is a solution of

s2115S a2
b

2ps D @12exp~22ps!#. ~166!

The meander onset corresponds to the critical valueac
where Eq.~166! has purely imaginary rootss5 iV ~besides
the two translation modess56 i ). For smallb, first-order
perturbation around theb50 values gives

ac5
3

8
2

4b

3p2
, ~167!

V5
1

2
1

8b

3p2
. ~168!

This shows that the correction term in Eq.~164! lowers the
threshold for the meander instability~i.e., plays a destabiliz-
ing role!. More importantly, it increases the frequency ra
V5v2 /v1 at meander onset, as announced.

The frequency shift predicted by Eq.~168! can be com-
pared to the numerical results of Fig. 9. Using the lowe
order threshold estimatemF8(0)53/8, one obtainsV21/2
.e/@c0cttRF8(0)#. With the estimateF8(0);20.58 ln(D),
the frequency shift is found to be of the same order of m
nitude as the one measured. This semiquantitative agree
leads us to think that, for the parameters of Fig. 9, the c
rection~168! is the main effect and that the correction~160!
is still numerically smaller than Eq.~168!. Of course, for
spirals of sufficiently large core this should cease to be tr
the correction~160! should become dominant, andv2 /v1 is
expected to drop below 1/2 before ultimately reaching
asymptotic value. Unfortunately, a numerical check of t
nonmonotonic behavior would require simulating spirals
very large core radius. This appears a difficult task w
present-day computers.

X. CONCLUSION

We have developed an analytical approach to spiral wa
close to the line]R where the spiral rotates around a lar
core and in the free-boundary limit where the medium exh
its an abrupt response to a stimulus (e!1). The main ingre-
dient of our analysis has been to note that in this limit
entire wave tip can be treated as an essentially rigid body
slow motion of which is controlled by the local spatial gr
t-

-
ent
r-

e,

s
s
f

es

-

e
he

dient of excitability in the medium in a way that can b
precisely deduced from the starting reaction-diffusion eq
tions. This has provided a simple understanding of the sp
tip motion and a precise reduction of its dynamics to that
a single point. This has allowed us to describe the H
bifurcation nature of the meander instability and to der
simply, but with precise asymptotic estimates, spiral d
due to spatial or temporal variation of excitability, or due
an imposed external field. This last computation determi
in particular the drift angle of the spiral with the extern
field and also the parameters governing the motion of
average scroll wave filament~curvature has been found to b
destabilizing in the large core regime!. In addition, our
analysis has allowed us to elucidate a generic instability
multiarmed spiral waves that was previously missed in
merical simulations in the large core limit because it dev
ops very slowly.

The present analysis can be compared with several pr
ous analytical approaches which have provided insights
spiral wave dynamics. As already noted, a phenomenolog
kinematical model of spiral wave dynamics@18# has been
proposed several years ago and has succeeded in capt
many aspects of spiral wave motion. It differs from th
present approach not only because its parameters need
adjusted and cannot be obtained from the underly
reaction-diffusion equation but also more fundamentally
cause here the dynamics of the spiral tip is reduced to
ordinary differential equation~ODE! and drives the motion
of the rest of the spiral arm whereas in the kinematical mo
of @18# the tip motion follows from that of the whole curve
Moreover, the tip motion is described here in a differe
way, by the tip rotation rate and not by a growing or retra
ing velocity as in@18#. Another notable approach is based
normal forms@16#. As in our case, the tip motion is de
scribed by ODE. The normal form approach postulates
existence of a Hopf bifurcation and it describes its coupl
to the spiral translation modes and the resulting tip mot
based on general symmetry arguments, close to the reso
case where the meander frequencyv2 is equal to the basic
spiral rotation frequencyv1. The present approach is re
stricted to a particular limit but makes more specific pred
tions. Besides providing determined parameters in the
duced equation which gives, for instance, the drift angle w
an external field, it has the advantage, in our view, of p
viding an understanding of the physical mechanisms resp
sible for the very existence of spiral waves and of their d
namics, be it meander or drift due to external action.

Extensions of the present work can be considered in s
eral directions.

~1! It would be interesting to extend the analysis
slightly more excitable media to capture hypermeandering
at least the change from inward to outward petals~i.e., the
line v15v2). This would require going beyond our adia
batic approximation and considering the dynamics of the
termediate region.

~2! The large core nature of the spiral rotation~i.e., the
proximity of the line]R) is an essential element of our ap
proach but several of our arguments do not really requ
sharp front and back interfaces~i.e., e!1). This is certainly
true for the23/2 divergence of the spiral radius divergen
near the line]R which only requires that the spiral norma
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velocity and curvature be related by an eikonal equation
the type of Eq.~5! on a sufficiently large scale. This is als
the case for the validity of the adiabatic approximatio
Thus, it appears that a computation of critical fingers and
the allied solvability conditions at finitee would provide an
extension of our reduced description to the neighborhood
the full line ]R. This would not accurately describe meand
~since]R and]M are close only fore!1) but would allow
a simple quantitative description of spiral drift and other ph
nomena along this line.

~3! Finally, it appears possible to extend some of our c
culations to scroll waves in 3D as succinctly described
filament motion in Sec. VII B. Hopefully, this will not only
provide definite coefficients in the average filament eq
tions of motion, but it will also provide a better understan
ing of the dynamics and instabilities of 3D scroll filamen
@47,37,48,49#.
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APPENDIX A: THE TIP BOUNDARY LAYER

It has been noted in Sec. IV A that the solutions of t
free-boundary problem~5!, ~8! are continuous as well a
their first two derivatives but have a discontinuous third d
rivative at their tip. We show in this appendix that this we
nonanalyticity can be taken care of by introducing a bou
ary layer of sizee/Ac0;e5/6 near the wave tip~i.e., smaller
than the tip radius of curvature of sizee/c0;e2/3 and larger
than the interface width;e).

We restrict ourselves to analyzing the case of a criti
finger. We take the interface widthe as length unit. We first
consider the sharp interface case. We find it convenien
parametrize the interface asx5h(y) instead ofy5yf /b(x) as
in the main part of this paper. In the vicinity of the wave t
„h8(y)!1…, Eq. ~5! reduces to

c0h8~y!5c~v !2h9~y!. ~A1!

The nonanalyticity of the interface is a direct consequenc
the nonanalyticity ofc(v),

c~v !5H c052a~v02vs!, y.0

c022y
ae

c0te
1•••, y,0.

~A2!

Equations~A1! and ~A2! give

h~y!5H 1

c0
S 1

2
~yc0!22

1

6
~yc0!31••• D , y.0

1

c0
S 1

2
~yc0!22

1

6
~122Bc!~yc0!31••• D , y,0.

~A3!

When one takes into account the finite width of the int
facec(v) becomes a rapidly but smoothly varying functio
f

.
f

of
r

-

l-
r

-
-

-

-

-

l

to

of

-

in the wave tip neighborhood. For a shape moving atc0
along they direction the two reaction-diffusion equations~3!,
~4! become

2c0]yu5¹2u1 f ~u,v !, ~A4!

2c0]yv5eg~u,v !. ~A5!

For notational simplicity, we consider functionsf and g of
the form f (u,v)5F(u)2v,g(u,v)5u2h with the stall
concentrationvs50 and the corresponding rest state atu
50,v50. We chooseF(u)52Au(u21)(u22) for illus-
trative purposes which givesD52Ah. To study the tip
neighborhood, it is convenient to use instead ofx the dis-
placed coordinatez5x2h(y) wherex5h(y) is a line in the
interface transition region~for definiteness, one can take a
iso-u line, for instance, the lineu51 with the above choice
of F). Equation~A4! then reads

2c0@]y2h8~y!]z#u5]z
2u1@]y2h8~y!]z#

2u1F~u!2v.
~A6!

The controller fieldv is assumed to remain close to the st
concentration and in the tip neighborhoodh8 is small. Thus,
at dominant order, Eq.~A6! reduces to

]z
2u1F~u!50, ~A7!

which has a standing front solutionu(0)(z) which goes from
u(0)50 at z52` to u(0)5u` at z51`@u(0)(z)51
1tanh(zAA/2) for the above choice ofF#. At next order, one
obtains

]z
2u(1)1F8~u(0)!u(1)5@c0h8~y!1h9~y!#]zu

(0)

2h82~y!]z
2u(0)1v. ~A8!

Integrating both members of Eq.~A8! with the zero mode
]zu

(0) gives the solvability condition,

c0h8~y!52h9~y!1c~y!, ~A9!

with

c~y!52

E dzv]zu
(0)

E dz~]zu
(0)!2

. ~A10!

Whenv has negligible variations in the interface width, E
~A10! gives back the sharp interface result withc(v)5
2av and

a5
u`

E dz@]zu
(0)#2

. ~A11!

On the contrary, in the tip region,v varies in the interface
transition region and the integral term in Eq.~A10! needs to
be more carefully evaluated. To lowest order, the fieldv on
the interface is obtained by integrating Eq.~A5!,



i

al

te

e
on

is

d in
ia-
a-

be
m
of
rge
ns:

er-

fi-
he
me
ich
riod
e
ale
n

ic

F
q.

ate

a-
. It
of

. It
he
ter-

t
s a

ef-
.

PRE 60 5101THEORY OF SPIRAL WAVE DYNAMICS IN WEAKLY . . .
v~z,y!5v01
e

c0
E

y

1`

dy1u0@z1h~y!2h~y1!#.

~A12!

When Eq.~A12! is substituted in Eq.~A10!, one obtains a
smooth functionc(y),

c~y!52av02
eau`

c0
E

y

1`

dy1T„h~y!2h~y1!…,

~A13!

with

T~w!5E
2`

1`

dz
]zu0u0~z1w!

u`
2

. ~A14!

Equation~A14! gives a smoothly varying function„for in-
stance with the above choice of F, T(w)
5 1

2 @exp(wAA/2)/sinh(wAA/2)2wAA/2/sinh2(wAA/2)#… in-
stead of the Heaviside function of the sharp interface lim
To make further progress, we assume~and check afterwards!
that h(y)5c0y2/21h(y) with h a small correction in a
neighborhood of the spiral tip that can be neglected in ev
ating the integral term in Eq.~A13!,

E
y

1`

dy1T„h~y!2h~y1!….E
y

1`

dy1T~c0y2/22c0y1
2/2!

[
1

Ac0

S~yAc0!. ~A15!

Equation~A9! then gives for the tip profile correction

c0
2y1c0h8~y!52

eau`

c0
3/2

S~yAc0!2h9~y!. ~A16!

Comparing the different terms, one obtains that a consis
scaling isy;1/Ac0 and h;Ac0 which give the size of the
boundary layer~note that, here, our unit of length is th
interface widthe) and the magnitude of the shape correcti
in the boundary layer. This legitimates the neglect ofh in
Eq. ~A15!. In the scaled variables,y5Y/Ac0 and h(y)
5Ac0H(yAc0), the equation for the tip profile correction

d2H

dY2
1BcS~Y!1Y50, ~A17!

where the functionS(Y) is defined by Eqs.~A15! and~A14!
@the second term on the left-hand side of Eq.~A16! is of
higher order#. The behaviors ofS at infinity, S(Y)→0 at Y
51` andS(Y)→22Y at Y52`, give the corresponding
asymptotic behaviors ofH, H(Y)→2Y3/6 at Y51` and
H(Y)→2Y3(122Bc)/6 at Y52`. These precisely match
the different small-y behaviors@Eq. ~A3!# of the sharp inter-
face description. It shows thatH(Y) interpolates smoothly
between these different behaviors.
t.

u-

nt

APPENDIX B: DYNAMICS OF THE INTERMEDIATE
REGION

The analysis of spiral dynamics that we have develope
the main part of this paper makes a crucial use of an ‘‘ad
batic’’ assumption. Namely, that for changes of medium p
rameter on the time scale of the spiral rotation periodT
;R0 /c0, the instantaneous motion of the spiral tip can
taken to be that of a spiral tip moving in a steady mediu
with characteristics invariant in time and identical to those
the changing medium at the considered time. In the la
core limit, the spiral is described by matching three regio
a close tip region on the scale of the tip radiusRtip5e/c0
which determines the spiral tip tangential velocity; an int
mediate region of size (R0Rtip

2 )1/3 which determines the in-
stantaneous radius of curvature of the tip trajectory, and
nally, an outer scale the dynamics of which is driven by t
previous two regions. The close tip region relaxes on a ti
scale which is independent of the spiral radius and wh
therefore clearly becomes short compared to the spiral pe
T for a spiral of sufficiently large radius. In this appendix, w
show that the intermediate region relaxes on a time sc
T(Rtip /R0)1/3 which is also much shorter than the rotatio
periodT in the large radius limit. This justifies our adiabat
assumption.

We first write the dynamic equivalent of the static BC
equation~40!, that is, the motion of a curve governed by E
~5! using polar coordinates

r
]u f

]t
5c0F11S r

du f

dr D 2G1/2

1eS du f

dr
1

~d/dr !~rdu f /dr !

11~rdu f /dr !2 D .

~B1!

As for the static case, it is convenient in the intermedi
region to introduce the rescaled variablesy and j with u f
5v1t1ye/(c0R0) and r 5R01@2R0(e/c0)2#1/3j. Expand-
ing the square root in Eq.~B1! and keeping terms of the
dominant order gives

R0

c0
S e

2c0R0
D 1/3]y

]t
1j1a5

1

2

d2y

dj2
1

1

4 S dy

dj D 2

, ~B2!

with

a5221/3S c0R0

e D 2/3ct2c0

c0
. ~B3!

Equation~B2! is the dynamic equivalent of the static equ
tion ~43! determining the shape of the intermediate region
shows that the characteristic time to adapt to changesa
~e.g., of ct) for j of order unity ~e.g., for the intermediate
region! is R0 /c0@e/(c0R0)#1/3. It is shorter by the factor
(Rtip /R0)1/3 than the rotation period as announced above
is, however, worth pointing out that this is larger than t
time one may have guessed, namely, the length of the in
mediate region divided by the velocityc0. The reason is tha
in the intermediate region the interface is almost radial. A
consequence, the advection velocity is much smaller thanc0
and advective effects become comparable to diffusionlike
fects due to surface tension@i.e., the last two terms in Eq
~B2! are of the same magnitude#.
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APPENDIX C: SOLVABILITY INTEGRALS AND
FUNCTIONS: SOME RELATIONS

In this appendix, we recapitulate the definitions and g
additional information on the several functions and integr
which have been introduced in the evaluation of solvabi
conditions.

The linear operators considered areLf and Lb , which
comes from the linearization of the front and back equati
around the critical finger in the tip region,

Lf5
d2

dx2
1H 2213F11S dYf

dx D 2G1/2J dYf

dx

d

dx
, ~C1!

Lb5
d2

dx2
2a~x!

d

dx
2b~x!, ~C2!

with,

a~x!5H 213$12Bc@Yf~x!2Yb~x!#%

3F11S dYb

dx D 2G1/2J dYb

dx
,

b~x!5BcF11S dYb

dx D 2G3/2

. ~C3!

Yf(x) andYb(x) are the critical finger front and back inte
faces which satisfy Eqs.~18! and ~19! with B5Bc
50.5353 . . . . Thesmallx behaviors of these different func
tions are Yf(x)5A2x1x/31•••, Yb(x)52A2x1x(1
22Bc)/31•••, a(x)523/(2x)1A2Bc /Ax1•••, and
b(x)5Bc /(2x)3/21•••.

The zero modej(x),x>0, of the adjoint ofLb is the
solution of

L b
†~j!5

d2j

dx2
1

d

dx
@a~x!j#2b~x!j50, ~C4!

which tends to 0 whenx→1`. It is here normalized by
imposing the supplementary condition supx>0@j(x)#51. A
local analysis determines the behavior ofj(x) for small x,
j(x)5j8(0)@x2Bc /A2x3/2ln(x)1•••#. Equation ~C4! has
been solved numerically by a finite- difference scheme o
nonuniform grid~with a step size decreasing to zero at sm
x). A graph of the obtained solution is shown in Fig. 6. T
computed value of the derivative ofj at the origin isj8(0)
.4.441. An exact relation betweenj8(0) and a weighted
integral of j is obtained by integrating Eq.~C4! betweenx
50 andx51`,

j8~0!/25E
0

1`

dxj~x!b~x!5BcI 4 . ~C5!

The verification of Eq.~C5! serves as a check of our nume
cal computation.
e
s

s

a
ll

To evaluate the solvability conditions, besidesYf ,Yb ,
and j, the solutions of the following inhomogeneous equ
tions with the linear operatorLf @Eq. ~C1!# are needed:

Lf~h1!511S dYf

dx D 2

, h1~0!50, h18~0!51/3,

~C6!

Lf~h2!5F11S dYf

dx D 2G3/2

,

h2~0!50, h2~x!;Ax/2 for x!1, ~C7!

Lf~hv,0!5@Yf~x!2Yb~x!#F11S dYf

dx D 2G3/2

,

hv,0~0!50,
dhv,0

dx
~0!52/3, ~C8!

Lf~he!5
dYf

dx F11S dYf

dx D 2G ,
he~0!50, he~x!;Ax/2 for x!1. ~C9!

They are plotted in Fig. 20.
For the evaluation of the different solvability condition

it is useful to compute the following integrals:

I 15E
0

1`

dxj~x!F11S dYb

dx D 2G.2.771,

I 25E
0

1`

dxj~x!h1~x!F11S dYb

dx D 2G3/2

.3.814,

I 35E
0

1`

dxj~x!@Yf~x!2Yb~x!#F11S dYb

dx D 2G3/2

.7.708,

I 45E
0

1`

dxj~x!F11S dYb

dx D 2G3/2

.4.1476,

I 55E
0

1`

dxj~x!h2~x!F11S dYb

dx D 2G3/2

.6.306,

FIG. 20. Graph of the functionsh1(x) ~solid line!, h2(x) ~dot-
ted line!, andhv,0(x) ~dashed line! defined in Eqs.~C6! and ~C8!.
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I 65E
0

1`

dxj~x!
dYb

dx F11S dYb

dx D 2G.22.118,

I v,05E
0

1`

dxj~x!hv,0F11S dYb

dx D 2G3/2

.12.553,

I'5E
0

1`

dxj~x!@Yf~x!2Yb~x!#
dYf

dx F11S dYb

dx D 2G3/2

.8.431,

I e5E
0

1`

dxj~x!he~x!F11S dYb

dx D 2G3/2

.4.476.

~C10!

Exact relations between some of these integrals can
obtained by using symmetry transformations of known
tion on the interfaces. For instance, under dilation the crit
finger front and back becomeYf ,a5Yf(ax)/a, Yb,a
5Yb(ax)/a and obey scaled versions of Eqs.~18! and~19!,

d2Yf ,a

dx2
5aH F11S dYf ,a

dx D 2G2F11S dYf ,a

dx D 2G3/2J ,

~C11!

d2Yb,a

dx2
5aH F11S dYb,a

dx D 2G1$12Bca@Yf ,a~x!2Yb,a~x!#%

3F11S dYb,a

dx D 2G3/2J . ~C12!

An expansion arounda51 gives Yf ,a5Yf1(a21)dYf

1••• where dYf(x)5xYf8(x)2Yf(x). Similarly, one has
Yb,a5Yb1(a21)dYb1••• with dYb(x)5xYb8(x)2Yb(x).
Expanding Eqs.~C11! and ~C12! in the same limit shows
that dYf anddYb obey the following linear equations:

Lf~dYf !5F11S dYf

dx D 2G2F11S dYf

dx D 2G3/2

, ~C13!

Lb~dYb!5F11S dYb

dx D 2G1$122Bc@Yf~x!2Yb~x!#

2BcdYf%F11S dYb

dx D 2G3/2

. ~C14!

Equation~C13! shows thatdYf5h12h2 @Eqs. ~C6!, ~C7!#
sincedYf(0)50 ~as can be checked from its explicit expre
sion!. Then, multiplying both sides of Eq.~C14! by j(x) and
integrating fromx50 to 1` gives the desired relation be
tween the above integrals,

I 11I 42Bc~ I 212I 32I 5!50. ~C15!

Using rotational symmetry in a similar manner, one o
tains thathe(x)5x1YfdYf /dx21 and the other relation

I 61Bc~ I'2I e!50. ~C16!
be
-
l

-

In the analysis of meandering, there appear several fu
tions of the tip displacement:

Lf~hv,d!5@Yf~x1d!2Yb~x1d!#Q~x1d!

3F11S dYf

dx D 2G3/2

, hv,d~0!50, ~C17!

I 3,d5E
0

1`

dxj~x!@Yf~x1d!2Yb~x1d!#Q~x1d!

3F11S dYb

dx D 2G3/2

,

I v,d5E
0

1`

dxj~x!hv,dF11S dYb

dx D 2G3/2

. ~C18!

For large udu, these functions tend toward constant valu
toward 0 when d→2` and I 3,d→2I 4 /Bc and I v,d
→2I 5 /Bc whend→1`. Their behavior for small displace
ments (udu!1) is nonanalytic. From the smallx behaviors of
Yf ,Yb , andj, one obtains, for 0,udu!1,

I 3,d5I 32
j8~0!

2
d ln~ udu!1O~d!, ~C19!

hv,d~x!5hv,0~x!2d ln~ udu!1O~d!. ~C20!

The expansion~C20! of hv,d for small d gives for I v,d

I v,d5I v,02I 4d ln~ udu!1O~d!. ~C21!

The functionF which measures the spiral self-interactio
F(d)5(I 3,d1BcI v,d)/I 32J, has therefore a singular expan
sion for 0,d!1,

F~d!;2
2Bc

I 3
d ln~ udu!.20.576d ln~ udu! ~C22!

@where we have used Eq.~C5! which shows that the singula
contributions of I 3,d and BcI v,d are equal#. For d→
2` F(d) tends toward 2J.21.872 and for d→
1` F(d) approaches 2(I 51I 4 /Bc)/I 32J.1.774.

The singular behavior ofF(d) at smalld disappears when
the controller field diffuses. For small diffusion@Yf(x1d)
2Yb(x1d)# Q(x1d) is simply replaced in Eqs.~C17! and
~C18! by the smoother functionYS(x1d),

YS~x;l D!5E
0

1` dx8

Apl D

expS 2
~x2x8!2

l D
2 D

3@Yf~x8!2Yb~x8!#. ~C23!

For l D!1, one can check that the singular behavior of t
self-interaction function is cut off atd;l D and the small
distance behavior ofF(d;l D) is

F~d;l D!;20.576d ln~ l D!. ~C24!

In the other limit l D@1, for x of order 1, YS(x;l D)
.1/Bc12x/(ApBcl D). The corresponding behavior o
I 3,d;l D

and I v,d;l D
at small d is I 3,d;l D

5I 3,0;l D
12I 4d/



io
e

ra

or

e
ng

re

e
to

et
gh
n
rg

y
ad

we

can

se

t

by

s-

oos-

5104 PRE 60VINCENT HAKIM AND ALAIN KARMA
(BcApl D) 1 •••,I v,d;l D
5 I v,0;l D

12I 5d/(BcApl D) 1 •••.
So the small distance behavior of the spiral self-interact
function is, for l @1 ~but still smaller than the scale of th
matching region!,

F~d;l D!;2
I 41BcI 5

BcApI 3

d

l D
.2.06d/l D . ~C25!

The derivative atd50 of the spiral self-interaction function
has been computed numerically for intermediate values
l D . It is plotted in Fig. 10.

APPENDIX D: NUMERICAL INTEGRATION OF THE
WAVE TIP EQUATION

In this appendix, we describe a simple scheme to integ
numerically the equation of motion for the wave tip~85!,
which is convenient to rewrite as a system of first-order
dinary differential equations

dq

du
5p, ~D1!

dp

du
52q1mF„q~u!2q~u22p!…. ~D2!

The difficulty of integrating this equation comes from th
fact that the translational invariance of the underlyi
reaction-diffusion equations remains present in Eq.~85!, and
hence in Eqs.~D1! and ~D2!, which are invariant under the
transformation

q~u!5q~u!1Aeiu1c.c. , ~D3!

where A is an arbitrary complex amplitude. It is therefo
desirable to develop a numerical scheme thatdiscretelypre-
serves this symmetry in order to avoid spurious discrete
fects resulting from the coupling of this translational mode
other modes. To see how to construct such a scheme, l
first consider the case where the second term on the ri
hand side of Eq.~D2! is absent. In this case these equatio
describe simple harmonic motion with a constant ene
;uAu2. It is well known~and simple to show! that the simple
Euler explicit scheme

qn115qn1hpn , ~D4!

pn115pn2hqn , ~D5!

whereh is the time~angle! step, does not conserve energ
but rather pumps energy into the motion. As a result, it le
ia

n

n

of

te

-

f-

us
t-

s
y

,
s

to an unbounded increase inA at long time. Therefore, this
scheme violates in an obvious way the symmetry that
would like to preserve here. In contrast, the modified~Euler-
Cromer! scheme

pn115pn2hqn , ~D6!

qn115qn1hpn11 ~D7!

exactly conserves the energy of harmonic motion. This
be seen by substituting the ansatzpn5p0r n and qn5q0r n

into Eqs.~D6! and~D7!. Nontrivial solutions then exist only
if

r 512h2/26 ihA12h2/45e6 iDu, ~D8!

where

Du5tan21S hA12h2/4

12h2/2
D . ~D9!

Hence,qn* 5AeinDu1c.c. is a solution of Eqs.~D6! and~D7!
with constantA. Let us now extend this scheme to the ca
where the second term on the right-hand side of Eq.~D2! is
included, by simply letting

pn115pn2hqn1hmF~qn2qn2N!, ~D10!

qn115qn1hpn11 . ~D11!

Now the key point is thatqn* 5AeinDu1c.c. remains an exac
solution of these equations only ifqn* 2qn2N* 50, and thus

Du52p/N. ~D12!

This condition together with Eq.~D9! then uniquely fixes the
steph for a given number of time steps,N, per basic period
of 2p. After simple algebraic manipulations, we find thath
should be equal to

h52 sin~p/N!. ~D13!

In summary, our integration scheme is uniquely defined
Eqs. ~D10! and ~D11! with h given by Eqs.~D13!. For an
arbitrary value ofN, this scheme is invariant under the tran
formation

qn5qn1AeinDu1c.c., ~D14!

which is the direct discrete analog of Eq.~D3!. A solution of
a desired numerical accuracy can then be obtained by ch
ing N sufficiently large.
I
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Zh. Éksp. Teor. Fiz.45, 601 ~1987! @JETP Lett. 45, 767
~1987!#; O. Steinbock, V. Zykov, and S. C. Mu¨ller, Nature
~London! 366, 322 ~1993!.

@20# K. I. Agladze and P. de Kepper, J. Phys. Chem.96, 5239
~1992!.

@21# O. Steinbock, J. Schu¨tze, and S. C. Mu¨ller, Phys. Rev. Lett.68,
248 ~1992!.
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